
hyper-h2
Release 4.1.0

Jan 30, 2023

Contents

1 Contents 3
1.1 Installation . 3
1.2 Getting Started: Writing Your Own HTTP/2 Server . 3
1.3 Negotiating HTTP/2 . 14
1.4 Code Examples . 23
1.5 Advanced Usage . 64
1.6 Low-Level Details . 67
1.7 h2 API . 71
1.8 Testimonials . 89
1.9 Release Process . 89
1.10 Release Notes . 90
1.11 Release History . 91

Python Module Index 105

Index 107

i

ii

hyper-h2, Release 4.1.0

h2 is a HTTP/2 protocol stack, written entirely in Python. The goal of h2 is to be a common HTTP/2 stack for the
Python ecosystem, usable in all programs regardless of concurrency model or environment.

To achieve this, h2 is entirely self-contained: it does no I/O of any kind, leaving that up to a wrapper library to control.
This ensures that it can seamlessly work in all kinds of environments, from single-threaded code to Twisted.

Its goal is to be 100% compatible with RFC 7540, implementing a complete HTTP/2 protocol stack build on a set of
finite state machines. Its secondary goals are to be fast, clear, and efficient.

For usage examples, see Getting Started: Writing Your Own HTTP/2 Server or consult the examples in the repository.

Contents 1

hyper-h2, Release 4.1.0

2 Contents

CHAPTER 1

Contents

1.1 Installation

h2 is a pure-python project. This means installing it is extremely simple. To get the latest release from PyPI, simply
run:

$ python -m pip install h2

Alternatively, feel free to download one of the release tarballs from our GitHub page, extract it to your favourite
directory, and then run

$ python setup.py install

1.2 Getting Started: Writing Your Own HTTP/2 Server

This document explains how to get started writing fully-fledged HTTP/2 implementations using h2 as the underlying
protocol stack. It covers the basic concepts you need to understand, and talks you through writing a very simple
HTTP/2 server.

This document assumes you’re moderately familiar with writing Python, and have some understanding of how com-
puter networks work. If you don’t, you’ll find it a lot easier if you get some understanding of those concepts first and
then return to this documentation.

1.2.1 Connections

h2’s core object is the H2Connection object. This object is an abstract representation of the state of a single HTTP/2
connection, and holds all the important protocol state. When using h2, this object will be the first thing you create and
the object that does most of the heavy lifting.

The interface to this object is relatively simple. For sending data, you call the object with methods indicating what
actions you want to perform: for example, you may want to send headers (you’d use the send_headers method),

3

https://github.com/python-hyper/h2

hyper-h2, Release 4.1.0

or send data (you’d use the send_data method). After you’ve decided what actions you want to perform, you get
some bytes out of the object that represent the HTTP/2-encoded representation of your actions, and send them out over
the network however you see fit.

When you receive data from the network, you pass that data in to the H2Connection object, which returns a list of
events. These events, covered in more detail later in Events, define the set of actions the remote peer has performed on
the connection, as represented by the HTTP/2-encoded data you just passed to the object.

Thus, you end up with a simple loop (which you may recognise as a more-specific form of an event loop):

1. First, you perform some actions.

2. You send the data created by performing those actions to the network.

3. You read data from the network.

4. You decode those into events.

5. The events cause you to trigger some actions: go back to step 1.

Of course, HTTP/2 is more complex than that, but in the very simplest case you can write a fairly effective HTTP/2
tool using just that kind of loop. Later in this document, we’ll do just that.

Some important subtleties of H2Connection objects are covered in Advanced Usage: see Connections: Advanced
for more information. However, one subtlety should be covered, and that is this: h2’s H2Connection object doesn’t
do I/O. Let’s talk briefly about why.

I/O

Any useful HTTP/2 tool eventually needs to do I/O. This is because it’s not very useful to be able to speak to other
computers using a protocol like HTTP/2 unless you actually speak to them sometimes.

However, doing I/O is not a trivial thing: there are lots of different ways to do it, and once you choose a way to do it
your code usually won’t work well with the approaches you didn’t choose.

While there are lots of different ways to do I/O, when it comes down to it all HTTP/2 implementations transform bytes
received into events, and events into bytes to send. So there’s no reason to have lots of different versions of this core
protocol code: one for Twisted, one for gevent, one for threading, and one for synchronous code.

This is why we said at the top that h2 is a HTTP/2 Protocol Stack, not a fully-fledged implementation. h2 knows how
to transform bytes into events and back, but that’s it. The I/O and smarts might be different, but the core HTTP/2 logic
is the same: that’s what h2 provides.

Not doing I/O makes h2 general, and also relatively simple. It has an easy-to-understand performance envelope, it’s
easy to test (and as a result easy to get correct behaviour out of), and it behaves in a reproducible way. These are all
great traits to have in a library that is doing something quite complex.

This document will talk you through how to build a relatively simple HTTP/2 implementation using h2, to give you
an understanding of where it fits in your software.

1.2.2 Events

When writing a HTTP/2 implementation it’s important to know what the remote peer is doing: if you didn’t care,
writing networked programs would be a lot easier!

h2 encodes the actions of the remote peer in the form of events. When you receive data from the remote peer and
pass it into your H2Connection object (see Connections), the H2Connection returns a list of objects, each one
representing a single event that has occurred. Each event refers to a single action the remote peer has taken.

4 Chapter 1. Contents

https://en.wikipedia.org/wiki/Event_loop

hyper-h2, Release 4.1.0

Some events are fairly high-level, referring to things that are more general than HTTP/2: for example, the
RequestReceived event is a general HTTP concept, not just a HTTP/2 one. Other events are extremely HTTP/2-
specific: for example, PushedStreamReceived refers to Server Push, a very HTTP/2-specific concept.

The reason these events exist is that h2 is intended to be very general. This means that, in many cases, h2 does not
know exactly what to do in response to an event. Your code will need to handle these events, and make decisions about
what to do. That’s the major role of any HTTP/2 implementation built on top of h2.

A full list of events is available in Events. For the purposes of this example, we will handle only a small set of events.

1.2.3 Writing Your Server

Armed with the knowledge you just obtained, we’re going to write a very simple HTTP/2 web server. The goal of this
tutorial is to write a server that can handle a HTTP GET, and that returns the headers sent by the client, encoded in
JSON. Basically, something a lot like httpbin.org/get. Nothing fancy, but this is a good way to get a handle on how
you should interact with h2.

For the sake of simplicity, we’re going to write this using the Python standard library, in Python 3. In reality, you’ll
probably want to use an asynchronous framework of some kind: see the examples directory in the repository for some
examples of how you’d do that.

Before we start, create a new file called h2server.py: we’ll use that as our workspace. Additionally, you should
install h2: follow the instructions in Installation.

Step 1: Sockets

To begin with, we need to make sure we can listen for incoming data and send it back. To do that, we need to use
the standard library’s socket module. For now we’re going to skip doing TLS: if you want to reach your server from
your web browser, though, you’ll need to add TLS and some other function. Consider looking at our examples in our
examples directory instead.

Let’s begin. First, open up h2server.py. We need to import the socket module and start listening for connections.

This is not a socket tutorial, so we’re not going to dive too deeply into how this works. If you want more detail about
sockets, there are lots of good tutorials on the web that you should investigate.

When you want to listen for incoming connections, the you need to bind an address first. So let’s do that. Try setting
up your file to look like this:

import socket

sock = socket.socket()
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('0.0.0.0', 8080))
sock.listen(5)

while True:
print(sock.accept())

In a shell window, execute this program (python h2server.py). Then, open another shell and run curl
http://localhost:8080/. In the first shell, you should see something like this:

$ python h2server.py
(<socket.socket fd=4, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM,
→˓proto=0, laddr=('127.0.0.1', 8080), raddr=('127.0.0.1', 58800)>, ('127.0.0.1',
→˓58800))

1.2. Getting Started: Writing Your Own HTTP/2 Server 5

https://httpbin.org/get
https://github.com/python-hyper/h2/tree/master/examples
https://docs.python.org/3/library/socket.html
https://github.com/python-hyper/h2/tree/master/examples

hyper-h2, Release 4.1.0

Run that curl command a few more times. You should see a few more similar lines appear. Note that the curl
command itself will exit with an error. That’s fine: it happens because we didn’t send any data.

Now go ahead and stop the server running by hitting Ctrl+C in the first shell. You should see a
KeyboardInterrupt error take the process down.

What’s the program above doing? Well, first it creates a socket object. This socket is then bound to a specific
address: ('0.0.0.0', 8080). This is a special address: it means that this socket should be listening for any
traffic to TCP port 8080. Don’t worry about the call to setsockopt: it just makes sure you can run this program
repeatedly.

We then loop forever calling the accept method on the socket. The accept method blocks until someone attempts to
connect to our TCP port: when they do, it returns a tuple: the first element is a new socket object, the second element
is a tuple of the address the new connection is from. You can see this in the output from our h2server.py script.

At this point, we have a script that can accept inbound connections. This is a good start! Let’s start getting HTTP/2
involved.

Step 2: Add a H2Connection

Now that we can listen for socket information, we want to prepare our HTTP/2 connection object and start handing it
data. For now, let’s just see what happens as we feed it data.

To make HTTP/2 connections, we need a tool that knows how to speak HTTP/2. Most versions of curl in the wild
don’t, so let’s install a Python tool. In your Python environment, run pip install hyper. This will install a
Python command-line HTTP/2 tool called hyper. To confirm that it works, try running this command and verifying
that the output looks similar to the one shown below:

$ hyper GET https://nghttp2.org/httpbin/get
{'args': {},
'headers': {'Host': 'nghttp2.org'},
'origin': '10.0.0.2',
'url': 'https://nghttp2.org/httpbin/get'}

Assuming it works, you’re now ready to start sending HTTP/2 data.

Back in our h2server.py script, we’re going to want to start handling data. Let’s add a function that takes a
socket returned from accept, and reads data from it. Let’s call that function handle. That function should create a
H2Connection object and then loop on the socket, reading data and passing it to the connection.

To read data from a socket we need to call recv. The recv function takes a number as its argument, which is the
maximum amount of data to be returned from a single call (note that recv will return as soon as any data is available,
even if that amount is vastly less than the number you passed to it). For the purposes of writing this kind of software
the specific value is not enormously useful, but should not be overly large. For that reason, when you’re unsure, a
number like 4096 or 65535 is a good bet. We’ll use 65535 for this example.

The function should look something like this:

import h2.connection
import h2.config

def handle(sock):
config = h2.config.H2Configuration(client_side=False)
conn = h2.connection.H2Connection(config=config)

while True:
data = sock.recv(65535)
print(conn.receive_data(data))

6 Chapter 1. Contents

https://docs.python.org/3/library/socket.html#socket.socket.accept

hyper-h2, Release 4.1.0

Let’s update our main loop so that it passes data on to our new data handling function. Your h2server.py should
end up looking a like this:

import socket

import h2.connection
import h2.config

def handle(sock):
config = h2.config.H2Configuration(client_side=False)
conn = h2.connection.H2Connection(config=config)

while True:
data = sock.recv(65535)
if not data:

break

print(conn.receive_data(data))

sock = socket.socket()
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('0.0.0.0', 8080))
sock.listen(5)

while True:
handle(sock.accept()[0])

Running that in one shell, in your other shell you can run hyper --h2 GET http://localhost:8080/.
That shell should hang, and you should then see the following output from your h2server.py shell:

$ python h2server.py
[<h2.events.RemoteSettingsChanged object at 0x10c4ee390>]

You’ll then need to kill hyper and h2server.py with Ctrl+C. Feel free to do this a few times, to see how things
behave.

So, what did we see here? When the connection was opened, we used the recv method to read some data from
the socket, in a loop. We then passed that data to the connection object, which returned us a single event object:
RemoteSettingsChanged.

But what we didn’t see was anything else. So it seems like all hyper did was change its settings, but nothing else.
If you look at the other hyper window, you’ll notice that it hangs for a while and then eventually fails with a socket
timeout. It was waiting for something: what?

Well, it turns out that at the start of a connection, both sides need to send a bit of data, called “the HTTP/2 preamble”.
We don’t need to get into too much detail here, but basically both sides need to send a single block of HTTP/2 data
that tells the other side what their settings are. hyper did that, but we didn’t.

Let’s do that next.

Step 3: Sending the Preamble

h2 makes doing connection setup really easy. All you need to do is call the initiate_connection method, and
then send the corresponding data. Let’s update our handle function to do just that:

1.2. Getting Started: Writing Your Own HTTP/2 Server 7

https://docs.python.org/3/library/socket.html#socket.socket.recv

hyper-h2, Release 4.1.0

def handle(sock):
config = h2.config.H2Configuration(client_side=False)
conn = h2.connection.H2Connection(config=config)
conn.initiate_connection()
sock.sendall(conn.data_to_send())

while True:
data = sock.recv(65535)
print(conn.receive_data(data))

The big change here is the call to initiate_connection, but there’s another new method in there:
data_to_send.

When you make function calls on your H2Connection object, these will often want to cause HTTP/2 data to be
written out to the network. But h2 doesn’t do any I/O, so it can’t do that itself. Instead, it writes it to an internal
buffer. You can retrieve data from this buffer using the data_to_send method. There are some subtleties about
that method, but we don’t need to worry about them right now: all we need to do is make sure we’re sending whatever
data is outstanding.

Your h2server.py script should now look like this:

import socket

import h2.connection
import h2.config

def handle(sock):
config = h2.config.H2Configuration(client_side=False)
conn = h2.connection.H2Connection(config=config)
conn.initiate_connection()
sock.sendall(conn.data_to_send())

while True:
data = sock.recv(65535)
if not data:

break

print(conn.receive_data(data))

sock = socket.socket()
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('0.0.0.0', 8080))
sock.listen(5)

while True:
handle(sock.accept()[0])

With this change made, rerun your h2server.py script and hit it with the same hyper command: hyper --h2
GET http://localhost:8080/. The hyper command still hangs, but this time we get a bit more output from
our h2server.py script:

$ python h2server.py
[<h2.events.RemoteSettingsChanged object at 0x10292d390>]
[<h2.events.SettingsAcknowledged object at 0x102b3a160>]
[<h2.events.RequestReceived object at 0x102b3a3c8>, <h2.events.StreamEnded object at
→˓0x102b3a400>]

8 Chapter 1. Contents

hyper-h2, Release 4.1.0

So, what’s happening?

The first thing to note is that we’re going around our loop more than once now. First, we receive some data that triggers
a RemoteSettingsChanged event. Then, we get some more data that triggers a SettingsAcknowledged
event. Finally, even more data that triggers two events: RequestReceived and StreamEnded.

So, what’s happening is that hyper is telling us about its settings, acknowledging ours, and then sending us a request.
Then it ends a stream, which is a HTTP/2 communications channel that holds a request and response pair.

A stream isn’t done until it’s either reset or both sides close it: in this sense it’s bi-directional. So what the
StreamEnded event tells us is that hyper is closing its half of the stream: it won’t send us any more data on
that stream. That means the request is done.

So why is hyper hanging? Well, we haven’t sent a response yet: let’s do that.

Step 4: Handling Events

What we want to do is send a response when we receive a request. Happily, we get an event when we receive a request,
so we can use that to be our signal.

Let’s define a new function that sends a response. For now, this response can just be a little bit of data that prints “it
works!”.

The function should take the H2Connection object, and the event that signaled the request. Let’s define it.

def send_response(conn, event):
stream_id = event.stream_id
conn.send_headers(

stream_id=stream_id,
headers=[

(':status', '200'),
('server', 'basic-h2-server/1.0')

],
)
conn.send_data(

stream_id=stream_id,
data=b'it works!',
end_stream=True

)

So while this is only a short function, there’s quite a lot going on here we need to unpack. Firstly, what’s a stream ID?
Earlier we discussed streams briefly, to say that they’re a bi-directional communications channel that holds a request
and response pair. Part of what makes HTTP/2 great is that there can be lots of streams going on at once, sending and
receiving different requests and responses. To identify each stream, we use a stream ID. These are unique across the
lifetime of a connection, and they go in ascending order.

Most H2Connection functions take a stream ID: they require you to actively tell the connection which one to use.
In this case, as a simple server, we will never need to choose a stream ID ourselves: the client will always choose one
for us. That means we’ll always be able to get the one we need off the events that fire.

Next, we send some headers. In HTTP/2, a response is made up of some set of headers, and optionally some data.
The headers have to come first: if you’re a client then you’ll be sending request headers, but in our case these headers
are our response headers.

Mostly these aren’t very exciting, but you’ll notice once special header in there: :status. This is a HTTP/2-specific
header, and it’s used to hold the HTTP status code that used to go at the top of a HTTP response. Here, we’re saying
the response is 200 OK, which is successful.

To send headers in h2, you use the send_headers function.

1.2. Getting Started: Writing Your Own HTTP/2 Server 9

hyper-h2, Release 4.1.0

Next, we want to send the body data. To do that, we use the send_data function. This also takes a stream ID. Note
that the data is binary: h2 does not work with unicode strings, so you must pass bytestrings to the H2Connection.
The one exception is headers: h2 will automatically encode those into UTF-8.

The last thing to note is that on our call to send_data, we set end_stream to True. This tells h2 (and the remote
peer) that we’re done with sending data: the response is over. Because we know that hyper will have ended its side
of the stream, when we end ours the stream will be totally done with.

We’re nearly ready to go with this: we just need to plumb this function in. Let’s amend our handle function again:

import h2.events
import h2.config

def handle(sock):
config = h2.config.H2Configuration(client_side=False)
conn = h2.connection.H2Connection(config=config)
conn.initiate_connection()
sock.sendall(conn.data_to_send())

while True:
data = sock.recv(65535)
if not data:

break

events = conn.receive_data(data)
for event in events:

if isinstance(event, h2.events.RequestReceived):
send_response(conn, event)

data_to_send = conn.data_to_send()
if data_to_send:

sock.sendall(data_to_send)

The changes here are all at the end. Now, when we receive some events, we look through them for the
RequestReceived event. If we find it, we make sure we send a response.

Then, at the bottom of the loop we check whether we have any data to send, and if we do, we send it. Then, we repeat
again.

With these changes, your h2server.py file should look like this:

import socket

import h2.connection
import h2.events
import h2.config

def send_response(conn, event):
stream_id = event.stream_id
conn.send_headers(

stream_id=stream_id,
headers=[

(':status', '200'),
('server', 'basic-h2-server/1.0')

],
)
conn.send_data(

stream_id=stream_id,
data=b'it works!',

(continues on next page)

10 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

end_stream=True
)

def handle(sock):
config = h2.config.H2Configuration(client_side=False)
conn = h2.connection.H2Connection(config=config)
conn.initiate_connection()
sock.sendall(conn.data_to_send())

while True:
data = sock.recv(65535)
if not data:

break

events = conn.receive_data(data)
for event in events:

if isinstance(event, h2.events.RequestReceived):
send_response(conn, event)

data_to_send = conn.data_to_send()
if data_to_send:

sock.sendall(data_to_send)

sock = socket.socket()
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('0.0.0.0', 8080))
sock.listen(5)

while True:
handle(sock.accept()[0])

Alright. Let’s run this, and then run our hyper command again.

This time, nothing is printed from our server, and the hyper side prints it works!. Success! Try running it a few
more times, and we can see that not only does it work the first time, it works the other times too!

We can speak HTTP/2! Let’s add the final step: returning the JSON-encoded request headers.

Step 5: Returning Headers

If we want to return the request headers in JSON, the first thing we have to do is find them. Handily, if you check the
documentation for RequestReceived you’ll find that this event carries, in addition to the stream ID, the request
headers.

This means we can make a really simple change to our send_response function to take those headers and encode
them as a JSON object. Let’s do that:

import json

def send_response(conn, event):
stream_id = event.stream_id
response_data = json.dumps(dict(event.headers)).encode('utf-8')

conn.send_headers(
stream_id=stream_id,

(continues on next page)

1.2. Getting Started: Writing Your Own HTTP/2 Server 11

hyper-h2, Release 4.1.0

(continued from previous page)

headers=[
(':status', '200'),
('server', 'basic-h2-server/1.0'),
('content-length', str(len(response_data))),
('content-type', 'application/json'),

],
)
conn.send_data(

stream_id=stream_id,
data=response_data,
end_stream=True

)

This is a really simple change, but it’s all we need to do: a few extra headers and the JSON dump, but that’s it.

Section 6: Bringing It All Together

This should be all we need!

Let’s take all the work we just did and throw that into our h2server.py file, which should now look like this:

import json
import socket

import h2.connection
import h2.events
import h2.config

def send_response(conn, event):
stream_id = event.stream_id
response_data = json.dumps(dict(event.headers)).encode('utf-8')

conn.send_headers(
stream_id=stream_id,
headers=[

(':status', '200'),
('server', 'basic-h2-server/1.0'),
('content-length', str(len(response_data))),
('content-type', 'application/json'),

],
)
conn.send_data(

stream_id=stream_id,
data=response_data,
end_stream=True

)

def handle(sock):
config = h2.config.H2Configuration(client_side=False)
conn = h2.connection.H2Connection(config=config)
conn.initiate_connection()
sock.sendall(conn.data_to_send())

while True:
data = sock.recv(65535)
if not data:

(continues on next page)

12 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

break

events = conn.receive_data(data)
for event in events:

if isinstance(event, h2.events.RequestReceived):
send_response(conn, event)

data_to_send = conn.data_to_send()
if data_to_send:

sock.sendall(data_to_send)

sock = socket.socket()
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('0.0.0.0', 8080))
sock.listen(5)

while True:
handle(sock.accept()[0])

Now, execute h2server.py and then point hyper at it again. You should see something like the following output
from hyper:

$ hyper --h2 GET http://localhost:8080/
{":scheme": "http", ":authority": "localhost", ":method": "GET", ":path": "/"}

Here you can see the HTTP/2 request ‘special headers’ that hyper sends. These are similar to the :status header
we have to send on our response: they encode important parts of the HTTP request in a clearly-defined way. If you
were writing a client stack using h2, you’d need to make sure you were sending those headers.

Congratulations!

Congratulations! You’ve written your first HTTP/2 server! If you want to extend it, there are a few directions you
could investigate:

• We didn’t handle a few events that we saw were being raised: you could add some methods to handle those
appropriately.

• Right now our server is single threaded, so it can only handle one client at a time. Consider rewriting this server
to use threads, or writing this server again using your favourite asynchronous programming framework.

If you plan to use threads, you should know that a H2Connection object is deliberately not thread-safe. As a
possible design pattern, consider creating threads and passing the sockets returned by accept to those threads,
and then letting those threads create their own H2Connection objects.

• Take a look at some of our long-form code examples in Code Examples.

• Alternatively, try playing around with our examples in our repository’s examples directory. These examples are
a bit more fully-featured, and can be reached from your web browser. Try adjusting what they do, or adding
new features to them!

• You may want to make this server reachable from your web browser. To do that, you’ll need to add proper
TLS support to your server. This can be tricky, and in many cases requires PyOpenSSL in addition to the other
libraries you have installed. Check the Eventlet example to see what PyOpenSSL code is required to TLS-ify
your server.

1.2. Getting Started: Writing Your Own HTTP/2 Server 13

https://github.com/python-hyper/h2/tree/master/examples
http://pyopenssl.readthedocs.org/
https://github.com/python-hyper/h2/blob/master/examples/eventlet/eventlet-server.py

hyper-h2, Release 4.1.0

1.3 Negotiating HTTP/2

RFC 7540 specifies three methods of negotiating HTTP/2 connections. This document outlines how to use h2 with
each one.

1.3.1 HTTPS URLs (ALPN)

Starting HTTP/2 for HTTPS URLs is outlined in RFC 7540 Section 3.3. In this case, the client and server use a TLS
extension to negotiate HTTP/2: ALPN. How to use ALPN is currently not covered in this document: please consult
the documentation for either the ssl module in the standard library, or the PyOpenSSL third-party modules, for
more on this topic.

This method is the simplest to use once the TLS connection is established. To use it with h2, after you’ve established
the connection and confirmed that HTTP/2 has been negotiated with ALPN, create a H2Connection object and
call H2Connection.initiate_connection. This will ensure that the appropriate preamble data is placed in
the data buffer. You should then immediately send the data returned by H2Connection.data_to_send on your
TLS connection.

At this point, you’re free to use all the HTTP/2 functionality provided by h2.

Note: Although h2 is not concerned with negotiating protocol versions, it is important to note that support for ALPN
is not available in the standard library of Python versions < 2.7.9. As a consequence, clients may encounter various
errors due to protocol versions mismatch.

Server Setup Example

This example uses the APIs as defined in Python 3.5. If you are using an older version of Python you may not have
access to the APIs used here. As noted above, please consult the documentation for the ssl module to confirm.

1 # -*- coding: utf-8 -*-
2 """
3 Server HTTPS Setup
4 ~~~~~~~~~~~~~~~~~~
5

6 This example code fragment demonstrates how to set up a HTTP/2 server that
7 negotiates HTTP/2 using NPN and ALPN. For the sake of maximum explanatory value
8 this code uses the synchronous, low-level sockets API: however, if you're not
9 using sockets directly (e.g. because you're using asyncio), you should focus on

10 the set up required for the SSLContext object. For other concurrency libraries
11 you may need to use other setup (e.g. for Twisted you'll need to use
12 IProtocolNegotiationFactory).
13

14 This code requires Python 3.5 or later.
15 """
16 import h2.config
17 import h2.connection
18 import socket
19 import ssl
20

21

22 def establish_tcp_connection():
23 """
24 This function establishes a server-side TCP connection. How it works isn't

(continues on next page)

14 Chapter 1. Contents

https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540#section-3.3
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://docs.python.org/3/library/ssl.html#module-ssl
https://www.pyopenssl.org/en/latest/api/ssl.html#module-OpenSSL.SSL
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://docs.python.org/3/library/ssl.html#module-ssl

hyper-h2, Release 4.1.0

(continued from previous page)

25 very important to this example.
26 """
27 bind_socket = socket.socket()
28 bind_socket.bind(('', 443))
29 bind_socket.listen(5)
30 return bind_socket.accept()[0]
31

32

33 def get_http2_ssl_context():
34 """
35 This function creates an SSLContext object that is suitably configured for
36 HTTP/2. If you're working with Python TLS directly, you'll want to do the
37 exact same setup as this function does.
38 """
39 # Get the basic context from the standard library.
40 ctx = ssl.create_default_context(purpose=ssl.Purpose.CLIENT_AUTH)
41

42 # RFC 7540 Section 9.2: Implementations of HTTP/2 MUST use TLS version 1.2
43 # or higher. Disable TLS 1.1 and lower.
44 ctx.options |= (
45 ssl.OP_NO_SSLv2 | ssl.OP_NO_SSLv3 | ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1
46)
47

48 # RFC 7540 Section 9.2.1: A deployment of HTTP/2 over TLS 1.2 MUST disable
49 # compression.
50 ctx.options |= ssl.OP_NO_COMPRESSION
51

52 # RFC 7540 Section 9.2.2: "deployments of HTTP/2 that use TLS 1.2 MUST
53 # support TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256". In practice, the
54 # blocklist defined in this section allows only the AES GCM and ChaCha20
55 # cipher suites with ephemeral key negotiation.
56 ctx.set_ciphers("ECDHE+AESGCM:ECDHE+CHACHA20:DHE+AESGCM:DHE+CHACHA20")
57

58 # We want to negotiate using NPN and ALPN. ALPN is mandatory, but NPN may
59 # be absent, so allow that. This setup allows for negotiation of HTTP/1.1.
60 ctx.set_alpn_protocols(["h2", "http/1.1"])
61

62 try:
63 ctx.set_npn_protocols(["h2", "http/1.1"])
64 except NotImplementedError:
65 pass
66

67 return ctx
68

69

70 def negotiate_tls(tcp_conn, context):
71 """
72 Given an established TCP connection and a HTTP/2-appropriate TLS context,
73 this function:
74

75 1. wraps TLS around the TCP connection.
76 2. confirms that HTTP/2 was negotiated and, if it was not, throws an error.
77 """
78 tls_conn = context.wrap_socket(tcp_conn, server_side=True)
79

80 # Always prefer the result from ALPN to that from NPN.
81 # You can only check what protocol was negotiated once the handshake is

(continues on next page)

1.3. Negotiating HTTP/2 15

hyper-h2, Release 4.1.0

(continued from previous page)

82 # complete.
83 negotiated_protocol = tls_conn.selected_alpn_protocol()
84 if negotiated_protocol is None:
85 negotiated_protocol = tls_conn.selected_npn_protocol()
86

87 if negotiated_protocol != "h2":
88 raise RuntimeError("Didn't negotiate HTTP/2!")
89

90 return tls_conn
91

92

93 def main():
94 # Step 1: Set up your TLS context.
95 context = get_http2_ssl_context()
96

97 # Step 2: Receive a TCP connection.
98 connection = establish_tcp_connection()
99

100 # Step 3: Wrap the connection in TLS and validate that we negotiated HTTP/2
101 tls_connection = negotiate_tls(connection, context)
102

103 # Step 4: Create a server-side H2 connection.
104 config = h2.config.H2Configuration(client_side=False)
105 http2_connection = h2.connection.H2Connection(config=config)
106

107 # Step 5: Initiate the connection
108 http2_connection.initiate_connection()
109 tls_connection.sendall(http2_connection.data_to_send())
110

111 # The TCP, TLS, and HTTP/2 handshakes are now complete. You can enter your
112 # main loop now.

Client Setup Example

The client example is very similar to the server example above. The SSLContext object requires some minor
changes, as does the H2Connection, but the bulk of the code is the same.

1 # -*- coding: utf-8 -*-
2 """
3 Client HTTPS Setup
4 ~~~~~~~~~~~~~~~~~~
5

6 This example code fragment demonstrates how to set up a HTTP/2 client that
7 negotiates HTTP/2 using NPN and ALPN. For the sake of maximum explanatory value
8 this code uses the synchronous, low-level sockets API: however, if you're not
9 using sockets directly (e.g. because you're using asyncio), you should focus on

10 the set up required for the SSLContext object. For other concurrency libraries
11 you may need to use other setup (e.g. for Twisted you'll need to use
12 IProtocolNegotiationFactory).
13

14 This code requires Python 3.5 or later.
15 """
16 import h2.connection
17 import socket
18 import ssl

(continues on next page)

16 Chapter 1. Contents

https://docs.python.org/3/library/ssl.html#ssl.SSLContext

hyper-h2, Release 4.1.0

(continued from previous page)

19

20

21 def establish_tcp_connection():
22 """
23 This function establishes a client-side TCP connection. How it works isn't
24 very important to this example. For the purpose of this example we connect
25 to localhost.
26 """
27 return socket.create_connection(('localhost', 443))
28

29

30 def get_http2_ssl_context():
31 """
32 This function creates an SSLContext object that is suitably configured for
33 HTTP/2. If you're working with Python TLS directly, you'll want to do the
34 exact same setup as this function does.
35 """
36 # Get the basic context from the standard library.
37 ctx = ssl.create_default_context(purpose=ssl.Purpose.SERVER_AUTH)
38

39 # RFC 7540 Section 9.2: Implementations of HTTP/2 MUST use TLS version 1.2
40 # or higher. Disable TLS 1.1 and lower.
41 ctx.options |= (
42 ssl.OP_NO_SSLv2 | ssl.OP_NO_SSLv3 | ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1
43)
44

45 # RFC 7540 Section 9.2.1: A deployment of HTTP/2 over TLS 1.2 MUST disable
46 # compression.
47 ctx.options |= ssl.OP_NO_COMPRESSION
48

49 # RFC 7540 Section 9.2.2: "deployments of HTTP/2 that use TLS 1.2 MUST
50 # support TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256". In practice, the
51 # blocklist defined in this section allows only the AES GCM and ChaCha20
52 # cipher suites with ephemeral key negotiation.
53 ctx.set_ciphers("ECDHE+AESGCM:ECDHE+CHACHA20:DHE+AESGCM:DHE+CHACHA20")
54

55 # We want to negotiate using NPN and ALPN. ALPN is mandatory, but NPN may
56 # be absent, so allow that. This setup allows for negotiation of HTTP/1.1.
57 ctx.set_alpn_protocols(["h2", "http/1.1"])
58

59 try:
60 ctx.set_npn_protocols(["h2", "http/1.1"])
61 except NotImplementedError:
62 pass
63

64 return ctx
65

66

67 def negotiate_tls(tcp_conn, context):
68 """
69 Given an established TCP connection and a HTTP/2-appropriate TLS context,
70 this function:
71

72 1. wraps TLS around the TCP connection.
73 2. confirms that HTTP/2 was negotiated and, if it was not, throws an error.
74 """
75 # Note that SNI is mandatory for HTTP/2, so you *must* pass the

(continues on next page)

1.3. Negotiating HTTP/2 17

hyper-h2, Release 4.1.0

(continued from previous page)

76 # server_hostname argument.
77 tls_conn = context.wrap_socket(tcp_conn, server_hostname='localhost')
78

79 # Always prefer the result from ALPN to that from NPN.
80 # You can only check what protocol was negotiated once the handshake is
81 # complete.
82 negotiated_protocol = tls_conn.selected_alpn_protocol()
83 if negotiated_protocol is None:
84 negotiated_protocol = tls_conn.selected_npn_protocol()
85

86 if negotiated_protocol != "h2":
87 raise RuntimeError("Didn't negotiate HTTP/2!")
88

89 return tls_conn
90

91

92 def main():
93 # Step 1: Set up your TLS context.
94 context = get_http2_ssl_context()
95

96 # Step 2: Create a TCP connection.
97 connection = establish_tcp_connection()
98

99 # Step 3: Wrap the connection in TLS and validate that we negotiated HTTP/2
100 tls_connection = negotiate_tls(connection, context)
101

102 # Step 4: Create a client-side H2 connection.
103 http2_connection = h2.connection.H2Connection()
104

105 # Step 5: Initiate the connection
106 http2_connection.initiate_connection()
107 tls_connection.sendall(http2_connection.data_to_send())
108

109 # The TCP, TLS, and HTTP/2 handshakes are now complete. You can enter your
110 # main loop now.

1.3.2 HTTP URLs (Upgrade)

Starting HTTP/2 for HTTP URLs is outlined in RFC 7540 Section 3.2. In this case, the client and server use the HTTP
Upgrade mechanism originally described in RFC 7230 Section 6.7. The client sends its initial HTTP/1.1 request with
two extra headers. The first is Upgrade: h2c, which requests upgrade to cleartext HTTP/2. The second is a
HTTP2-Settings header, which contains a specially formatted string that encodes a HTTP/2 Settings frame.

To do this with h2 you have two slightly different flows: one for clients, one for servers.

Clients

For a client, when sending the first request you should manually add your Upgrade header. You should then create
a H2Connection object and call H2Connection.initiate_upgrade_connection with no arguments.
This method will return a bytestring to use as the value of your HTTP2-Settings header.

If the server returns a 101 status code, it has accepted the upgrade, and you should immediately send the data returned
by H2Connection.data_to_send. Now you should consume the entire 101 header block. All data after the
101 header block is HTTP/2 data that should be fed directly to H2Connection.receive_data and handled as
normal with h2.

18 Chapter 1. Contents

https://tools.ietf.org/html/rfc7540#section-3.2
https://tools.ietf.org/html/rfc7230#section-6.7

hyper-h2, Release 4.1.0

If the server does not return a 101 status code then it is not upgrading. Continue with HTTP/1.1 as normal: you may
throw away your H2Connection object, as it is of no further use.

The server will respond to your original request in HTTP/2. Please pay attention to the events received from h2, as
they will define the server’s response.

Client Example

The code below demonstrates how to handle a plaintext upgrade from the perspective of the client. For the purposes
of keeping the example code as simple and generic as possible it uses the synchronous socket API that comes with the
Python standard library: if you want to use asynchronous I/O, you will need to translate this code to the appropriate
idiom.

1 # -*- coding: utf-8 -*-
2 """
3 Client Plaintext Upgrade
4 ~~~~~~~~~~~~~~~~~~~~~~~~
5

6 This example code fragment demonstrates how to set up a HTTP/2 client that uses
7 the plaintext HTTP Upgrade mechanism to negotiate HTTP/2 connectivity. For
8 maximum explanatory value it uses the synchronous socket API that comes with
9 the Python standard library. In product code you will want to use an actual

10 HTTP/1.1 client if possible.
11

12 This code requires Python 3.5 or later.
13 """
14 import h2.connection
15 import socket
16

17

18 def establish_tcp_connection():
19 """
20 This function establishes a client-side TCP connection. How it works isn't
21 very important to this example. For the purpose of this example we connect
22 to localhost.
23 """
24 return socket.create_connection(('localhost', 80))
25

26

27 def send_initial_request(connection, settings):
28 """
29 For the sake of this upgrade demonstration, we're going to issue a GET
30 request against the root of the site. In principle the best request to
31 issue for an upgrade is actually ``OPTIONS *``, but this is remarkably
32 poorly supported and can break in weird ways.
33 """
34 # Craft our initial request per RFC 7540 Section 3.2. This requires two
35 # special header fields: the Upgrade headre, and the HTTP2-Settings header.
36 # The value of the HTTP2-Settings header field comes from h2.
37 request = (
38 b"GET / HTTP/1.1\r\n" +
39 b"Host: localhost\r\n" +
40 b"Upgrade: h2c\r\n" +
41 b"HTTP2-Settings: " + settings + b"\r\n" +
42 b"\r\n"
43)
44 connection.sendall(request)

(continues on next page)

1.3. Negotiating HTTP/2 19

hyper-h2, Release 4.1.0

(continued from previous page)

45

46

47 def get_upgrade_response(connection):
48 """
49 This function reads from the socket until the HTTP/1.1 end-of-headers
50 sequence (CRLFCRLF) is received. It then checks what the status code of the
51 response is.
52

53 This is not a substitute for proper HTTP/1.1 parsing, but it's good enough
54 for example purposes.
55 """
56 data = b''
57 while b'\r\n\r\n' not in data:
58 data += connection.recv(8192)
59

60 headers, rest = data.split(b'\r\n\r\n', 1)
61

62 # An upgrade response begins HTTP/1.1 101 Switching Protocols. Look for the
63 # code. In production code you should also check that the upgrade is to
64 # h2c, but here we know we only offered one upgrade so there's only one
65 # possible upgrade in use.
66 split_headers = headers.split()
67 if split_headers[1] != b'101':
68 raise RuntimeError("Not upgrading!")
69

70 # We don't care about the HTTP/1.1 data anymore, but we do care about
71 # any other data we read from the socket: this is going to be HTTP/2 data
72 # that must be passed to the H2Connection.
73 return rest
74

75

76 def main():
77 """
78 The client upgrade flow.
79 """
80 # Step 1: Establish the TCP connection.
81 connection = establish_tcp_connection()
82

83 # Step 2: Create H2 Connection object, put it in upgrade mode, and get the
84 # value of the HTTP2-Settings header we want to use.
85 h2_connection = h2.connection.H2Connection()
86 settings_header_value = h2_connection.initiate_upgrade_connection()
87

88 # Step 3: Send the initial HTTP/1.1 request with the upgrade fields.
89 send_initial_request(connection, settings_header_value)
90

91 # Step 4: Read the HTTP/1.1 response, look for 101 response.
92 extra_data = get_upgrade_response(connection)
93

94 # Step 5: Immediately send the pending HTTP/2 data.
95 connection.sendall(h2_connection.data_to_send())
96

97 # Step 6: Feed the body data to the connection.
98 events = connection.receive_data(extra_data)
99

100 # Now you can enter your main loop, beginning by processing the first set
101 # of events above. These events may include ResponseReceived, which will

(continues on next page)

20 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

102 # contain the response to the request we made in Step 3.
103 main_loop(events)

Servers

If the first request you receive on a connection from the client contains an Upgrade header with the h2c to-
ken in it, and you’re willing to upgrade, you should create a H2Connection object and call H2Connection.
initiate_upgrade_connection with the value of the HTTP2-Settings header (as a bytestring) as the
only argument.

Then, you should send back a 101 response that contains h2c in the Upgrade header. That response will inform
the client that you’re switching to HTTP/2. Then, you should immediately send the data that is returned to you by
H2Connection.data_to_send on the connection: this is a necessary part of the HTTP/2 upgrade process.

At this point, you may now respond to the original HTTP/1.1 request in HTTP/2 by calling the appropriate methods
on the H2Connection object. No further HTTP/1.1 may be sent on this connection: from this point onward, all data
sent by you and the client will be HTTP/2 data.

Server Example

The code below demonstrates how to handle a plaintext upgrade from the perspective of the server. For the purposes
of keeping the example code as simple and generic as possible it uses the synchronous socket API that comes with the
Python standard library: if you want to use asynchronous I/O, you will need to translate this code to the appropriate
idiom.

1 # -*- coding: utf-8 -*-
2 """
3 Server Plaintext Upgrade
4 ~~~~~~~~~~~~~~~~~~~~~~~~
5

6 This example code fragment demonstrates how to set up a HTTP/2 server that uses
7 the plaintext HTTP Upgrade mechanism to negotiate HTTP/2 connectivity. For
8 maximum explanatory value it uses the synchronous socket API that comes with
9 the Python standard library. In product code you will want to use an actual

10 HTTP/1.1 server library if possible.
11

12 This code requires Python 3.5 or later.
13 """
14 import h2.config
15 import h2.connection
16 import re
17 import socket
18

19

20 def establish_tcp_connection():
21 """
22 This function establishes a server-side TCP connection. How it works isn't
23 very important to this example.
24 """
25 bind_socket = socket.socket()
26 bind_socket.bind(('', 443))
27 bind_socket.listen(5)
28 return bind_socket.accept()[0]

(continues on next page)

1.3. Negotiating HTTP/2 21

hyper-h2, Release 4.1.0

(continued from previous page)

29

30

31 def receive_initial_request(connection):
32 """
33 We're going to receive a request. For the sake of this example, we're going
34 to assume that the first request has no body. If it doesn't have the
35 Upgrade: h2c header field and the HTTP2-Settings header field, we'll throw
36 errors.
37

38 In production code, you should use a proper HTTP/1.1 parser and actually
39 serve HTTP/1.1 requests!
40

41 Returns the value of the HTTP2-Settings header field.
42 """
43 data = b''
44 while not data.endswith(b'\r\n\r\n'):
45 data += connection.recv(8192)
46

47 match = re.search(b'Upgrade: h2c\r\n', data)
48 if match is None:
49 raise RuntimeError("HTTP/2 upgrade not requested!")
50

51 # We need to look for the HTTP2-Settings header field. Again, in production
52 # code you shouldn't use regular expressions for this, but it's good enough
53 # for the example.
54 match = re.search(b'HTTP2-Settings: (\\S+)\r\n', data)
55 if match is None:
56 raise RuntimeError("HTTP2-Settings header field not present!")
57

58 return match.group(1)
59

60

61 def send_upgrade_response(connection):
62 """
63 This function writes the 101 Switching Protocols response.
64 """
65 response = (
66 b"HTTP/1.1 101 Switching Protocols\r\n"
67 b"Upgrade: h2c\r\n"
68 b"\r\n"
69)
70 connection.sendall(response)
71

72

73 def main():
74 """
75 The server upgrade flow.
76 """
77 # Step 1: Establish the TCP connection.
78 connection = establish_tcp_connection()
79

80 # Step 2: Read the response. We expect this to request an upgrade.
81 settings_header_value = receive_initial_request(connection)
82

83 # Step 3: Create a H2Connection object in server mode, and pass it the
84 # value of the HTTP2-Settings header field.
85 config = h2.config.H2Configuration(client_side=False)

(continues on next page)

22 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

86 h2_connection = h2.connection.H2Connection(config=config)
87 h2_connection.initiate_upgrade_connection(
88 settings_header=settings_header_value
89)
90

91 # Step 4: Send the 101 Switching Protocols response.
92 send_upgrade_response(connection)
93

94 # Step 5: Send pending HTTP/2 data.
95 connection.sendall(h2_connection.data_to_send())
96

97 # At this point, you can enter your main loop. The first step has to be to
98 # send the response to the initial HTTP/1.1 request you received on stream
99 # 1.

100 main_loop()

1.3.3 Prior Knowledge

It’s possible that you as a client know that a particular server supports HTTP/2, and that you do not need to perform
any of the negotiations described above. In that case, you may follow the steps in HTTPS URLs (ALPN), ignoring all
references to ALPN: there’s no need to perform the upgrade dance described in HTTP URLs (Upgrade).

1.4 Code Examples

This section of the documentation contains long-form code examples. These are intended as references for developers
that would like to get an understanding of how h2 fits in with various Python I/O frameworks.

1.4.1 Example Servers

Asyncio Example Server

This example is a basic HTTP/2 server written using asyncio, using some functionality that was introduced in Python
3.5. This server represents basically just the same JSON-headers-returning server that was built in the Getting Started:
Writing Your Own HTTP/2 Server document.

This example demonstrates some basic asyncio techniques.

1 # -*- coding: utf-8 -*-
2 """
3 asyncio-server.py
4 ~~~~~~~~~~~~~~~~~
5

6 A fully-functional HTTP/2 server using asyncio. Requires Python 3.5+.
7

8 This example demonstrates handling requests with bodies, as well as handling
9 those without. In particular, it demonstrates the fact that DataReceived may

10 be called multiple times, and that applications must handle that possibility.
11 """
12 import asyncio
13 import io
14 import json

(continues on next page)

1.4. Code Examples 23

https://docs.python.org/3/library/asyncio.html

hyper-h2, Release 4.1.0

(continued from previous page)

15 import ssl
16 import collections
17 from typing import List, Tuple
18

19 from h2.config import H2Configuration
20 from h2.connection import H2Connection
21 from h2.events import (
22 ConnectionTerminated, DataReceived, RemoteSettingsChanged,
23 RequestReceived, StreamEnded, StreamReset, WindowUpdated
24)
25 from h2.errors import ErrorCodes
26 from h2.exceptions import ProtocolError, StreamClosedError
27 from h2.settings import SettingCodes
28

29

30 RequestData = collections.namedtuple('RequestData', ['headers', 'data'])
31

32

33 class H2Protocol(asyncio.Protocol):
34 def __init__(self):
35 config = H2Configuration(client_side=False, header_encoding='utf-8')
36 self.conn = H2Connection(config=config)
37 self.transport = None
38 self.stream_data = {}
39 self.flow_control_futures = {}
40

41 def connection_made(self, transport: asyncio.Transport):
42 self.transport = transport
43 self.conn.initiate_connection()
44 self.transport.write(self.conn.data_to_send())
45

46 def connection_lost(self, exc):
47 for future in self.flow_control_futures.values():
48 future.cancel()
49 self.flow_control_futures = {}
50

51 def data_received(self, data: bytes):
52 try:
53 events = self.conn.receive_data(data)
54 except ProtocolError as e:
55 self.transport.write(self.conn.data_to_send())
56 self.transport.close()
57 else:
58 self.transport.write(self.conn.data_to_send())
59 for event in events:
60 if isinstance(event, RequestReceived):
61 self.request_received(event.headers, event.stream_id)
62 elif isinstance(event, DataReceived):
63 self.receive_data(event.data, event.stream_id)
64 elif isinstance(event, StreamEnded):
65 self.stream_complete(event.stream_id)
66 elif isinstance(event, ConnectionTerminated):
67 self.transport.close()
68 elif isinstance(event, StreamReset):
69 self.stream_reset(event.stream_id)
70 elif isinstance(event, WindowUpdated):
71 self.window_updated(event.stream_id, event.delta)

(continues on next page)

24 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

72 elif isinstance(event, RemoteSettingsChanged):
73 if SettingCodes.INITIAL_WINDOW_SIZE in event.changed_settings:
74 self.window_updated(None, 0)
75

76 self.transport.write(self.conn.data_to_send())
77

78 def request_received(self, headers: List[Tuple[str, str]], stream_id: int):
79 headers = collections.OrderedDict(headers)
80 method = headers[':method']
81

82 # Store off the request data.
83 request_data = RequestData(headers, io.BytesIO())
84 self.stream_data[stream_id] = request_data
85

86 def stream_complete(self, stream_id: int):
87 """
88 When a stream is complete, we can send our response.
89 """
90 try:
91 request_data = self.stream_data[stream_id]
92 except KeyError:
93 # Just return, we probably 405'd this already
94 return
95

96 headers = request_data.headers
97 body = request_data.data.getvalue().decode('utf-8')
98

99 data = json.dumps(
100 {"headers": headers, "body": body}, indent=4
101).encode("utf8")
102

103 response_headers = (
104 (':status', '200'),
105 ('content-type', 'application/json'),
106 ('content-length', str(len(data))),
107 ('server', 'asyncio-h2'),
108)
109 self.conn.send_headers(stream_id, response_headers)
110 asyncio.ensure_future(self.send_data(data, stream_id))
111

112 def receive_data(self, data: bytes, stream_id: int):
113 """
114 We've received some data on a stream. If that stream is one we're
115 expecting data on, save it off. Otherwise, reset the stream.
116 """
117 try:
118 stream_data = self.stream_data[stream_id]
119 except KeyError:
120 self.conn.reset_stream(
121 stream_id, error_code=ErrorCodes.PROTOCOL_ERROR
122)
123 else:
124 stream_data.data.write(data)
125

126 def stream_reset(self, stream_id):
127 """
128 A stream reset was sent. Stop sending data.

(continues on next page)

1.4. Code Examples 25

hyper-h2, Release 4.1.0

(continued from previous page)

129 """
130 if stream_id in self.flow_control_futures:
131 future = self.flow_control_futures.pop(stream_id)
132 future.cancel()
133

134 async def send_data(self, data, stream_id):
135 """
136 Send data according to the flow control rules.
137 """
138 while data:
139 while self.conn.local_flow_control_window(stream_id) < 1:
140 try:
141 await self.wait_for_flow_control(stream_id)
142 except asyncio.CancelledError:
143 return
144

145 chunk_size = min(
146 self.conn.local_flow_control_window(stream_id),
147 len(data),
148 self.conn.max_outbound_frame_size,
149)
150

151 try:
152 self.conn.send_data(
153 stream_id,
154 data[:chunk_size],
155 end_stream=(chunk_size == len(data))
156)
157 except (StreamClosedError, ProtocolError):
158 # The stream got closed and we didn't get told. We're done
159 # here.
160 break
161

162 self.transport.write(self.conn.data_to_send())
163 data = data[chunk_size:]
164

165 async def wait_for_flow_control(self, stream_id):
166 """
167 Waits for a Future that fires when the flow control window is opened.
168 """
169 f = asyncio.Future()
170 self.flow_control_futures[stream_id] = f
171 await f
172

173 def window_updated(self, stream_id, delta):
174 """
175 A window update frame was received. Unblock some number of flow control
176 Futures.
177 """
178 if stream_id and stream_id in self.flow_control_futures:
179 f = self.flow_control_futures.pop(stream_id)
180 f.set_result(delta)
181 elif not stream_id:
182 for f in self.flow_control_futures.values():
183 f.set_result(delta)
184

185 self.flow_control_futures = {}
(continues on next page)

26 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

186

187

188 ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
189 ssl_context.options |= (
190 ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 | ssl.OP_NO_COMPRESSION
191)
192 ssl_context.load_cert_chain(certfile="cert.crt", keyfile="cert.key")
193 ssl_context.set_alpn_protocols(["h2"])
194

195 loop = asyncio.get_event_loop()
196 # Each client connection will create a new protocol instance
197 coro = loop.create_server(H2Protocol, '127.0.0.1', 8443, ssl=ssl_context)
198 server = loop.run_until_complete(coro)
199

200 # Serve requests until Ctrl+C is pressed
201 print('Serving on {}'.format(server.sockets[0].getsockname()))
202 try:
203 loop.run_forever()
204 except KeyboardInterrupt:
205 pass
206

207 # Close the server
208 server.close()
209 loop.run_until_complete(server.wait_closed())
210 loop.close()

Curio Example Server

This example is a basic HTTP/2 server written using curio, David Beazley’s example of how to build a concurrent
networking framework using Python 3.5’s new async/await syntax.

This example is notable for demonstrating the correct use of HTTP/2 flow control with h2. It is also a good example
of the brand new syntax.

1 #!/usr/bin/env python3.5
2 # -*- coding: utf-8 -*-
3 """
4 curio-server.py
5 ~~~~~~~~~~~~~~~
6

7 A fully-functional HTTP/2 server written for curio.
8

9 Requires Python 3.5+.
10 """
11 import mimetypes
12 import os
13 import sys
14

15 from curio import Event, spawn, socket, ssl, run
16

17 import h2.config
18 import h2.connection
19 import h2.events
20

21

(continues on next page)

1.4. Code Examples 27

https://curio.readthedocs.org/en/latest/

hyper-h2, Release 4.1.0

(continued from previous page)

22 # The maximum amount of a file we'll send in a single DATA frame.
23 READ_CHUNK_SIZE = 8192
24

25

26 async def create_listening_ssl_socket(address, certfile, keyfile):
27 """
28 Create and return a listening TLS socket on a given address.
29 """
30 ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
31 ssl_context.options |= (
32 ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 | ssl.OP_NO_COMPRESSION
33)
34 ssl_context.set_ciphers("ECDHE+AESGCM")
35 ssl_context.load_cert_chain(certfile=certfile, keyfile=keyfile)
36 ssl_context.set_alpn_protocols(["h2"])
37

38 sock = socket.socket()
39 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
40 sock = await ssl_context.wrap_socket(sock)
41 sock.bind(address)
42 sock.listen()
43

44 return sock
45

46

47 async def h2_server(address, root, certfile, keyfile):
48 """
49 Create an HTTP/2 server at the given address.
50 """
51 sock = await create_listening_ssl_socket(address, certfile, keyfile)
52 print("Now listening on %s:%d" % address)
53

54 async with sock:
55 while True:
56 client, _ = await sock.accept()
57 server = H2Server(client, root)
58 await spawn(server.run())
59

60

61 class H2Server:
62 """
63 A basic HTTP/2 file server. This is essentially very similar to
64 SimpleHTTPServer from the standard library, but uses HTTP/2 instead of
65 HTTP/1.1.
66 """
67 def __init__(self, sock, root):
68 config = h2.config.H2Configuration(
69 client_side=False, header_encoding='utf-8'
70)
71 self.sock = sock
72 self.conn = h2.connection.H2Connection(config=config)
73 self.root = root
74 self.flow_control_events = {}
75

76 async def run(self):
77 """
78 Loop over the connection, managing it appropriately.

(continues on next page)

28 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

79 """
80 self.conn.initiate_connection()
81 await self.sock.sendall(self.conn.data_to_send())
82

83 while True:
84 # 65535 is basically arbitrary here: this amounts to "give me
85 # whatever data you have".
86 data = await self.sock.recv(65535)
87 if not data:
88 break
89

90 events = self.conn.receive_data(data)
91 for event in events:
92 if isinstance(event, h2.events.RequestReceived):
93 await spawn(
94 self.request_received(event.headers, event.stream_id)
95)
96 elif isinstance(event, h2.events.DataReceived):
97 self.conn.reset_stream(event.stream_id)
98 elif isinstance(event, h2.events.WindowUpdated):
99 await self.window_updated(event)

100

101 await self.sock.sendall(self.conn.data_to_send())
102

103 async def request_received(self, headers, stream_id):
104 """
105 Handle a request by attempting to serve a suitable file.
106 """
107 headers = dict(headers)
108 assert headers[':method'] == 'GET'
109

110 path = headers[':path'].lstrip('/')
111 full_path = os.path.join(self.root, path)
112

113 if not os.path.exists(full_path):
114 response_headers = (
115 (':status', '404'),
116 ('content-length', '0'),
117 ('server', 'curio-h2'),
118)
119 self.conn.send_headers(
120 stream_id, response_headers, end_stream=True
121)
122 await self.sock.sendall(self.conn.data_to_send())
123 else:
124 await self.send_file(full_path, stream_id)
125

126 async def send_file(self, file_path, stream_id):
127 """
128 Send a file, obeying the rules of HTTP/2 flow control.
129 """
130 filesize = os.stat(file_path).st_size
131 content_type, content_encoding = mimetypes.guess_type(file_path)
132 response_headers = [
133 (':status', '200'),
134 ('content-length', str(filesize)),
135 ('server', 'curio-h2'),

(continues on next page)

1.4. Code Examples 29

hyper-h2, Release 4.1.0

(continued from previous page)

136]
137 if content_type:
138 response_headers.append(('content-type', content_type))
139 if content_encoding:
140 response_headers.append(('content-encoding', content_encoding))
141

142 self.conn.send_headers(stream_id, response_headers)
143 await self.sock.sendall(self.conn.data_to_send())
144

145 with open(file_path, 'rb', buffering=0) as f:
146 await self._send_file_data(f, stream_id)
147

148 async def _send_file_data(self, fileobj, stream_id):
149 """
150 Send the data portion of a file. Handles flow control rules.
151 """
152 while True:
153 while self.conn.local_flow_control_window(stream_id) < 1:
154 await self.wait_for_flow_control(stream_id)
155

156 chunk_size = min(
157 self.conn.local_flow_control_window(stream_id),
158 READ_CHUNK_SIZE,
159)
160

161 data = fileobj.read(chunk_size)
162 keep_reading = (len(data) == chunk_size)
163

164 self.conn.send_data(stream_id, data, not keep_reading)
165 await self.sock.sendall(self.conn.data_to_send())
166

167 if not keep_reading:
168 break
169

170 async def wait_for_flow_control(self, stream_id):
171 """
172 Blocks until the flow control window for a given stream is opened.
173 """
174 evt = Event()
175 self.flow_control_events[stream_id] = evt
176 await evt.wait()
177

178 async def window_updated(self, event):
179 """
180 Unblock streams waiting on flow control, if needed.
181 """
182 stream_id = event.stream_id
183

184 if stream_id and stream_id in self.flow_control_events:
185 evt = self.flow_control_events.pop(stream_id)
186 await evt.set()
187 elif not stream_id:
188 # Need to keep a real list here to use only the events present at
189 # this time.
190 blocked_streams = list(self.flow_control_events.keys())
191 for stream_id in blocked_streams:
192 event = self.flow_control_events.pop(stream_id)

(continues on next page)

30 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

193 await event.set()
194 return
195

196

197 if __name__ == '__main__':
198 host = sys.argv[2] if len(sys.argv) > 2 else "localhost"
199 print("Try GETting:")
200 print(" On OSX after 'brew install curl --with-c-ares --with-libidn --with-

→˓nghttp2 --with-openssl':")
201 print("/usr/local/opt/curl/bin/curl --tlsv1.2 --http2 -k https://localhost:5000/

→˓bundle.js")
202 print("Or open a browser to: https://localhost:5000/")
203 print(" (Accept all the warnings)")
204 run(h2_server((host, 5000), sys.argv[1],
205 "{}.crt.pem".format(host),
206 "{}.key".format(host)), with_monitor=True)

Eventlet Example Server

This example is a basic HTTP/2 server written using the eventlet concurrent networking framework. This example is
notable for demonstrating how to configure PyOpenSSL, which eventlet uses for its TLS layer.

In terms of HTTP/2 functionality, this example is very simple: it returns the request headers as a JSON document to
the caller. It does not obey HTTP/2 flow control, which is a flaw, but it is otherwise functional.

1 # -*- coding: utf-8 -*-
2 """
3 eventlet-server.py
4 ~~~~~~~~~~~~~~~~~~
5

6 A fully-functional HTTP/2 server written for Eventlet.
7 """
8 import collections
9 import json

10

11 import eventlet
12

13 from eventlet.green.OpenSSL import SSL, crypto
14 from h2.config import H2Configuration
15 from h2.connection import H2Connection
16 from h2.events import RequestReceived, DataReceived
17

18

19 class ConnectionManager(object):
20 """
21 An object that manages a single HTTP/2 connection.
22 """
23 def __init__(self, sock):
24 config = H2Configuration(client_side=False)
25 self.sock = sock
26 self.conn = H2Connection(config=config)
27

28 def run_forever(self):
29 self.conn.initiate_connection()
30 self.sock.sendall(self.conn.data_to_send())

(continues on next page)

1.4. Code Examples 31

http://eventlet.net/
https://pyopenssl.readthedocs.org/en/stable/
http://eventlet.net/

hyper-h2, Release 4.1.0

(continued from previous page)

31

32 while True:
33 data = self.sock.recv(65535)
34 if not data:
35 break
36

37 events = self.conn.receive_data(data)
38

39 for event in events:
40 if isinstance(event, RequestReceived):
41 self.request_received(event.headers, event.stream_id)
42 elif isinstance(event, DataReceived):
43 self.conn.reset_stream(event.stream_id)
44

45 self.sock.sendall(self.conn.data_to_send())
46

47 def request_received(self, headers, stream_id):
48 headers = collections.OrderedDict(headers)
49 data = json.dumps({'headers': headers}, indent=4).encode('utf-8')
50

51 response_headers = (
52 (':status', '200'),
53 ('content-type', 'application/json'),
54 ('content-length', str(len(data))),
55 ('server', 'eventlet-h2'),
56)
57 self.conn.send_headers(stream_id, response_headers)
58 self.conn.send_data(stream_id, data, end_stream=True)
59

60

61 def alpn_callback(conn, protos):
62 if b'h2' in protos:
63 return b'h2'
64

65 raise RuntimeError("No acceptable protocol offered!")
66

67

68 def npn_advertise_cb(conn):
69 return [b'h2']
70

71

72 # Let's set up SSL. This is a lot of work in PyOpenSSL.
73 options = (
74 SSL.OP_NO_COMPRESSION |
75 SSL.OP_NO_SSLv2 |
76 SSL.OP_NO_SSLv3 |
77 SSL.OP_NO_TLSv1 |
78 SSL.OP_NO_TLSv1_1
79)
80 context = SSL.Context(SSL.SSLv23_METHOD)
81 context.set_options(options)
82 context.set_verify(SSL.VERIFY_NONE, lambda *args: True)
83 context.use_privatekey_file('server.key')
84 context.use_certificate_file('server.crt')
85 context.set_npn_advertise_callback(npn_advertise_cb)
86 context.set_alpn_select_callback(alpn_callback)
87 context.set_cipher_list(

(continues on next page)

32 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

88 "ECDHE+AESGCM"
89)
90 context.set_tmp_ecdh(crypto.get_elliptic_curve(u'prime256v1'))
91

92 server = eventlet.listen(('0.0.0.0', 443))
93 server = SSL.Connection(context, server)
94 pool = eventlet.GreenPool()
95

96 while True:
97 try:
98 new_sock, _ = server.accept()
99 manager = ConnectionManager(new_sock)

100 pool.spawn_n(manager.run_forever)
101 except (SystemExit, KeyboardInterrupt):
102 break

Gevent Example Server

This example is a basic HTTP/2 server written using gevent, a powerful coroutine-based Python networking library
that uses greenlet to provide a high-level synchronous API on top of the libev or libuv event loop.

This example is inspired by the curio one and also demonstrates the correct use of HTTP/2 flow control with h2 and
how gevent can be simple to use.

1 # -*- coding: utf-8 -*-
2 """
3 gevent-server.py
4 ================
5

6 A simple HTTP/2 server written for gevent serving static files from a directory
→˓specified as input.

7 If no directory is provided, the current directory will be used.
8 """
9 import mimetypes

10 import sys
11 from functools import partial
12 from pathlib import Path
13 from typing import Tuple, Dict, Optional
14

15 from gevent import socket, ssl
16 from gevent.event import Event
17 from gevent.server import StreamServer
18 from h2 import events
19 from h2.config import H2Configuration
20 from h2.connection import H2Connection
21

22

23 def get_http2_tls_context() -> ssl.SSLContext:
24 ctx = ssl.create_default_context(purpose=ssl.Purpose.CLIENT_AUTH)
25 ctx.options |= (
26 ssl.OP_NO_SSLv2 | ssl.OP_NO_SSLv3 | ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1
27)
28

29 ctx.options |= ssl.OP_NO_COMPRESSION
30 ctx.set_ciphers('ECDHE+AESGCM:ECDHE+CHACHA20:DHE+AESGCM:DHE+CHACHA20')

(continues on next page)

1.4. Code Examples 33

http://www.gevent.org/
https://greenlet.readthedocs.io/en/latest/
http://software.schmorp.de/pkg/libev.html
http://libuv.org/

hyper-h2, Release 4.1.0

(continued from previous page)

31 ctx.load_cert_chain(certfile='localhost.crt', keyfile='localhost.key')
32 ctx.set_alpn_protocols(['h2'])
33 try:
34 ctx.set_npn_protocols(['h2'])
35 except NotImplementedError:
36 pass
37

38 return ctx
39

40

41 class H2Worker:
42

43 def __init__(self, sock: socket, address: Tuple[str, str], source_dir: str =
→˓None):

44 self._sock = sock
45 self._address = address
46 self._flow_control_events: Dict[int, Event] = {}
47 self._server_name = 'gevent-h2'
48 self._connection: Optional[H2Connection] = None
49 self._read_chunk_size = 8192 # The maximum amount of a file we'll send in a

→˓single DATA frame
50

51 self._check_sources_dir(source_dir)
52 self._sources_dir = source_dir
53

54 self._run()
55

56 def _initiate_connection(self):
57 config = H2Configuration(client_side=False, header_encoding='utf-8')
58 self._connection = H2Connection(config=config)
59 self._connection.initiate_connection()
60 self._sock.sendall(self._connection.data_to_send())
61

62 @staticmethod
63 def _check_sources_dir(sources_dir: str) -> None:
64 p = Path(sources_dir)
65 if not p.is_dir():
66 raise NotADirectoryError(f'{sources_dir} does not exists')
67

68 def _send_error_response(self, status_code: str, event: events.RequestReceived) ->
→˓ None:

69 self._connection.send_headers(
70 stream_id=event.stream_id,
71 headers=[
72 (':status', status_code),
73 ('content-length', '0'),
74 ('server', self._server_name),
75],
76 end_stream=True
77)
78 self._sock.sendall(self._connection.data_to_send())
79

80 def _handle_request(self, event: events.RequestReceived) -> None:
81 headers = dict(event.headers)
82 if headers[':method'] != 'GET':
83 self._send_error_response('405', event)
84 return

(continues on next page)

34 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

85

86 file_path = Path(self._sources_dir) / headers[':path'].lstrip('/')
87 if not file_path.is_file():
88 self._send_error_response('404', event)
89 return
90

91 self._send_file(file_path, event.stream_id)
92

93 def _send_file(self, file_path: Path, stream_id: int) -> None:
94 """
95 Send a file, obeying the rules of HTTP/2 flow control.
96 """
97 file_size = file_path.stat().st_size
98 content_type, content_encoding = mimetypes.guess_type(str(file_path))
99 response_headers = [

100 (':status', '200'),
101 ('content-length', str(file_size)),
102 ('server', self._server_name)
103]
104 if content_type:
105 response_headers.append(('content-type', content_type))
106 if content_encoding:
107 response_headers.append(('content-encoding', content_encoding))
108

109 self._connection.send_headers(stream_id, response_headers)
110 self._sock.sendall(self._connection.data_to_send())
111

112 with file_path.open(mode='rb', buffering=0) as f:
113 self._send_file_data(f, stream_id)
114

115 def _send_file_data(self, file_obj, stream_id: int) -> None:
116 """
117 Send the data portion of a file. Handles flow control rules.
118 """
119 while True:
120 while self._connection.local_flow_control_window(stream_id) < 1:
121 self._wait_for_flow_control(stream_id)
122

123 chunk_size = min(self._connection.local_flow_control_window(stream_id),
→˓self._read_chunk_size)

124 data = file_obj.read(chunk_size)
125 keep_reading = (len(data) == chunk_size)
126

127 self._connection.send_data(stream_id, data, not keep_reading)
128 self._sock.sendall(self._connection.data_to_send())
129

130 if not keep_reading:
131 break
132

133 def _wait_for_flow_control(self, stream_id: int) -> None:
134 """
135 Blocks until the flow control window for a given stream is opened.
136 """
137 event = Event()
138 self._flow_control_events[stream_id] = event
139 event.wait()
140

(continues on next page)

1.4. Code Examples 35

hyper-h2, Release 4.1.0

(continued from previous page)

141 def _handle_window_update(self, event: events.WindowUpdated) -> None:
142 """
143 Unblock streams waiting on flow control, if needed.
144 """
145 stream_id = event.stream_id
146

147 if stream_id and stream_id in self._flow_control_events:
148 g_event = self._flow_control_events.pop(stream_id)
149 g_event.set()
150 elif not stream_id:
151 # Need to keep a real list here to use only the events present at this

→˓time.
152 blocked_streams = list(self._flow_control_events.keys())
153 for stream_id in blocked_streams:
154 g_event = self._flow_control_events.pop(stream_id)
155 g_event.set()
156

157 def _run(self) -> None:
158 self._initiate_connection()
159

160 while True:
161 data = self._sock.recv(65535)
162 if not data:
163 break
164

165 h2_events = self._connection.receive_data(data)
166 for event in h2_events:
167 if isinstance(event, events.RequestReceived):
168 self._handle_request(event)
169 elif isinstance(event, events.DataReceived):
170 self._connection.reset_stream(event.stream_id)
171 elif isinstance(event, events.WindowUpdated):
172 self._handle_window_update(event)
173

174 data_to_send = self._connection.data_to_send()
175 if data_to_send:
176 self._sock.sendall(data_to_send)
177

178

179 if __name__ == '__main__':
180 files_dir = sys.argv[1] if len(sys.argv) > 1 else f'{Path().cwd()}'
181 server = StreamServer(('127.0.0.1', 8080), partial(H2Worker, source_dir=files_

→˓dir),
182 ssl_context=get_http2_tls_context())
183 try:
184 server.serve_forever()
185 except KeyboardInterrupt:
186 server.close()

Tornado Example Server

This example is a basic HTTP/2 server written using the Tornado asynchronous networking library.

The server returns the request headers as a JSON document to the caller, just like the example from the Getting Started:
Writing Your Own HTTP/2 Server document.

36 Chapter 1. Contents

http://www.tornadoweb.org/

hyper-h2, Release 4.1.0

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 """
4 tornado-server.py
5 ~~~~~~~~~~~~~~~~~
6

7 A fully-functional HTTP/2 server written for Tornado.
8 """
9 import collections

10 import json
11 import ssl
12

13 import tornado.gen
14 import tornado.ioloop
15 import tornado.iostream
16 import tornado.tcpserver
17

18 from h2.config import H2Configuration
19 from h2.connection import H2Connection
20 from h2.events import RequestReceived, DataReceived
21

22

23 def create_ssl_context(certfile, keyfile):
24 ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
25 ssl_context.options |= (
26 ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 | ssl.OP_NO_COMPRESSION
27)
28 ssl_context.set_ciphers("ECDHE+AESGCM")
29 ssl_context.load_cert_chain(certfile=certfile, keyfile=keyfile)
30 ssl_context.set_alpn_protocols(["h2"])
31 return ssl_context
32

33

34 class H2Server(tornado.tcpserver.TCPServer):
35

36 @tornado.gen.coroutine
37 def handle_stream(self, stream, address):
38 handler = EchoHeadersHandler(stream)
39 yield handler.handle()
40

41

42 class EchoHeadersHandler(object):
43

44 def __init__(self, stream):
45 self.stream = stream
46

47 config = H2Configuration(client_side=False)
48 self.conn = H2Connection(config=config)
49

50 @tornado.gen.coroutine
51 def handle(self):
52 self.conn.initiate_connection()
53 yield self.stream.write(self.conn.data_to_send())
54

55 while True:
56 try:
57 data = yield self.stream.read_bytes(65535, partial=True)

(continues on next page)

1.4. Code Examples 37

hyper-h2, Release 4.1.0

(continued from previous page)

58 if not data:
59 break
60

61 events = self.conn.receive_data(data)
62 for event in events:
63 if isinstance(event, RequestReceived):
64 self.request_received(event.headers, event.stream_id)
65 elif isinstance(event, DataReceived):
66 self.conn.reset_stream(event.stream_id)
67

68 yield self.stream.write(self.conn.data_to_send())
69

70 except tornado.iostream.StreamClosedError:
71 break
72

73 def request_received(self, headers, stream_id):
74 headers = collections.OrderedDict(headers)
75 data = json.dumps({'headers': headers}, indent=4).encode('utf-8')
76

77 response_headers = (
78 (':status', '200'),
79 ('content-type', 'application/json'),
80 ('content-length', str(len(data))),
81 ('server', 'tornado-h2'),
82)
83 self.conn.send_headers(stream_id, response_headers)
84 self.conn.send_data(stream_id, data, end_stream=True)
85

86

87 if __name__ == '__main__':
88 ssl_context = create_ssl_context('server.crt', 'server.key')
89 server = H2Server(ssl_options=ssl_context)
90 server.listen(8888)
91 io_loop = tornado.ioloop.IOLoop.current()
92 io_loop.start()

Twisted Example Server

This example is a basic HTTP/2 server written for the Twisted asynchronous networking framework. This is a rela-
tively fleshed out example, and in particular it makes sure to obey HTTP/2 flow control rules.

This server differs from some of the other example servers by serving files, rather than simply sending JSON responses.
This makes the example lengthier, but also brings it closer to a real-world use-case.

1 # -*- coding: utf-8 -*-
2 """
3 twisted-server.py
4 ~~~~~~~~~~~~~~~~~
5

6 A fully-functional HTTP/2 server written for Twisted.
7 """
8 import functools
9 import mimetypes

10 import os
11 import os.path

(continues on next page)

38 Chapter 1. Contents

https://twistedmatrix.com/

hyper-h2, Release 4.1.0

(continued from previous page)

12 import sys
13

14 from OpenSSL import crypto
15 from twisted.internet.defer import Deferred, inlineCallbacks
16 from twisted.internet.protocol import Protocol, Factory
17 from twisted.internet import endpoints, reactor, ssl
18 from h2.config import H2Configuration
19 from h2.connection import H2Connection
20 from h2.events import (
21 RequestReceived, DataReceived, WindowUpdated
22)
23 from h2.exceptions import ProtocolError
24

25

26 def close_file(file, d):
27 file.close()
28

29

30 READ_CHUNK_SIZE = 8192
31

32

33 class H2Protocol(Protocol):
34 def __init__(self, root):
35 config = H2Configuration(client_side=False)
36 self.conn = H2Connection(config=config)
37 self.known_proto = None
38 self.root = root
39

40 self._flow_control_deferreds = {}
41

42 def connectionMade(self):
43 self.conn.initiate_connection()
44 self.transport.write(self.conn.data_to_send())
45

46 def dataReceived(self, data):
47 if not self.known_proto:
48 self.known_proto = True
49

50 try:
51 events = self.conn.receive_data(data)
52 except ProtocolError:
53 if self.conn.data_to_send:
54 self.transport.write(self.conn.data_to_send())
55 self.transport.loseConnection()
56 else:
57 for event in events:
58 if isinstance(event, RequestReceived):
59 self.requestReceived(event.headers, event.stream_id)
60 elif isinstance(event, DataReceived):
61 self.dataFrameReceived(event.stream_id)
62 elif isinstance(event, WindowUpdated):
63 self.windowUpdated(event)
64

65 if self.conn.data_to_send:
66 self.transport.write(self.conn.data_to_send())
67

68 def requestReceived(self, headers, stream_id):
(continues on next page)

1.4. Code Examples 39

hyper-h2, Release 4.1.0

(continued from previous page)

69 headers = dict(headers) # Invalid conversion, fix later.
70 assert headers[b':method'] == b'GET'
71

72 path = headers[b':path'].lstrip(b'/')
73 full_path = os.path.join(self.root, path)
74

75 if not os.path.exists(full_path):
76 response_headers = (
77 (':status', '404'),
78 ('content-length', '0'),
79 ('server', 'twisted-h2'),
80)
81 self.conn.send_headers(
82 stream_id, response_headers, end_stream=True
83)
84 self.transport.write(self.conn.data_to_send())
85 else:
86 self.sendFile(full_path, stream_id)
87

88 return
89

90 def dataFrameReceived(self, stream_id):
91 self.conn.reset_stream(stream_id)
92 self.transport.write(self.conn.data_to_send())
93

94 def sendFile(self, file_path, stream_id):
95 filesize = os.stat(file_path).st_size
96 content_type, content_encoding = mimetypes.guess_type(
97 file_path.decode('utf-8')
98)
99 response_headers = [

100 (':status', '200'),
101 ('content-length', str(filesize)),
102 ('server', 'twisted-h2'),
103]
104 if content_type:
105 response_headers.append(('content-type', content_type))
106 if content_encoding:
107 response_headers.append(('content-encoding', content_encoding))
108

109 self.conn.send_headers(stream_id, response_headers)
110 self.transport.write(self.conn.data_to_send())
111

112 f = open(file_path, 'rb')
113 d = self._send_file(f, stream_id)
114 d.addErrback(functools.partial(close_file, f))
115

116 def windowUpdated(self, event):
117 """
118 Handle a WindowUpdated event by firing any waiting data sending
119 callbacks.
120 """
121 stream_id = event.stream_id
122

123 if stream_id and stream_id in self._flow_control_deferreds:
124 d = self._flow_control_deferreds.pop(stream_id)
125 d.callback(event.delta)

(continues on next page)

40 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

126 elif not stream_id:
127 for d in self._flow_control_deferreds.values():
128 d.callback(event.delta)
129

130 self._flow_control_deferreds = {}
131

132 return
133

134 @inlineCallbacks
135 def _send_file(self, file, stream_id):
136 """
137 This callback sends more data for a given file on the stream.
138 """
139 keep_reading = True
140 while keep_reading:
141 while not self.conn.remote_flow_control_window(stream_id):
142 yield self.wait_for_flow_control(stream_id)
143

144 chunk_size = min(
145 self.conn.remote_flow_control_window(stream_id), READ_CHUNK_SIZE
146)
147 data = file.read(chunk_size)
148 keep_reading = len(data) == chunk_size
149 self.conn.send_data(stream_id, data, not keep_reading)
150 self.transport.write(self.conn.data_to_send())
151

152 if not keep_reading:
153 break
154

155 file.close()
156

157 def wait_for_flow_control(self, stream_id):
158 """
159 Returns a Deferred that fires when the flow control window is opened.
160 """
161 d = Deferred()
162 self._flow_control_deferreds[stream_id] = d
163 return d
164

165

166 class H2Factory(Factory):
167 def __init__(self, root):
168 self.root = root
169

170 def buildProtocol(self, addr):
171 print(H2Protocol)
172 return H2Protocol(self.root)
173

174

175 root = sys.argv[1].encode('utf-8')
176

177 with open('server.crt', 'r') as f:
178 cert_data = f.read()
179 with open('server.key', 'r') as f:
180 key_data = f.read()
181

182 cert = crypto.load_certificate(crypto.FILETYPE_PEM, cert_data)
(continues on next page)

1.4. Code Examples 41

hyper-h2, Release 4.1.0

(continued from previous page)

183 key = crypto.load_privatekey(crypto.FILETYPE_PEM, key_data)
184 options = ssl.CertificateOptions(
185 privateKey=key,
186 certificate=cert,
187 acceptableProtocols=[b'h2'],
188)
189

190 endpoint = endpoints.SSL4ServerEndpoint(reactor, 8080, options, backlog=128)
191 endpoint.listen(H2Factory(root))
192 reactor.run()

Example HTTP/2-only WSGI Server

This example is a more complex HTTP/2 server that acts as a WSGI server, passing data to an arbitrary WSGI
application. This example is written using asyncio. The server supports most of PEP-3333, and so could in principle
be used as a production WSGI server: however, that’s not recommended as certain shortcuts have been taken to ensure
ease of implementation and understanding.

The main advantages of this example are:

1. It properly demonstrates HTTP/2 flow control management.

2. It demonstrates how to plug h2 into a larger, more complex application.

1 # -*- coding: utf-8 -*-
2 """
3 asyncio-server.py
4 ~~~~~~~~~~~~~~~~~
5

6 A fully-functional WSGI server, written using h2. Requires asyncio.
7

8 To test it, try installing httpbin from pip (``pip install httpbin``) and then
9 running the server (``python asyncio-server.py httpbin:app``).

10

11 This server does not support HTTP/1.1: it is a HTTP/2-only WSGI server. The
12 purpose of this code is to demonstrate how to integrate h2 into a more
13 complex application, and to demonstrate several principles of concurrent
14 programming.
15

16 The architecture looks like this:
17

18 +---------------------------------+
19 | 1x HTTP/2 Server Thread |
20 | (running asyncio) |
21 +---------------------------------+
22 +---------------------------------+
23 | N WSGI Application Threads |
24 | (no asyncio) |
25 +---------------------------------+
26

27 Essentially, we spin up an asyncio-based event loop in the main thread. This
28 launches one HTTP/2 Protocol instance for each inbound connection, all of which
29 will read and write data from within the main thread in an asynchronous manner.
30

31 When each HTTP request comes in, the server will build the WSGI environment
32 dictionary and create a ``Stream`` object. This object will hold the relevant

(continues on next page)

42 Chapter 1. Contents

https://docs.python.org/3/library/asyncio.html

hyper-h2, Release 4.1.0

(continued from previous page)

33 state for the request/response pair and will act as the WSGI side of the logic.
34 That object will then be passed to a background thread pool, and when a worker
35 is available the WSGI logic will begin to be executed. This model ensures that
36 the asyncio web server itself is never blocked by the WSGI application.
37

38 The WSGI application and the HTTP/2 server communicate via an asyncio queue,
39 together with locks and threading events. The locks themselves are implicit in
40 asyncio's "call_soon_threadsafe", which allows for a background thread to
41 register an action with the main asyncio thread. When the asyncio thread
42 eventually takes the action in question it sets as threading event, signaling
43 to the background thread that it is free to continue its work.
44

45 To make the WSGI application work with flow control, there is a very important
46 invariant that must be observed. Any WSGI action that would cause data to be
47 emitted to the network MUST be accompanied by a threading Event that is not
48 set until that data has been written to the transport. This ensures that the
49 WSGI application *blocks* until the data is actually sent. The reason we
50 require this invariant is that the HTTP/2 server may choose to re-order some
51 data chunks for flow control reasons: that is, the application for stream X may
52 have actually written its data first, but the server may elect to send the data
53 for stream Y first. This means that it's vital that there not be *two* writes
54 for stream X active at any one point or they may get reordered, which would be
55 particularly terrible.
56

57 Thus, the server must cooperate to ensure that each threading event only fires
58 when the *complete* data for that event has been written to the asyncio
59 transport. Any earlier will cause untold craziness.
60 """
61 import asyncio
62 import importlib
63 import queue
64 import ssl
65 import sys
66 import threading
67

68 from h2.config import H2Configuration
69 from h2.connection import H2Connection
70 from h2.events import (
71 DataReceived, RequestReceived, WindowUpdated, StreamEnded, StreamReset
72)
73

74

75 # Used to signal that a request has completed.
76 #
77 # This is a convenient way to do "in-band" signaling of stream completion
78 # without doing anything so heavyweight as using a class. Essentially, we can
79 # test identity against this empty object. In fact, this is so convenient that
80 # we use this object for all streams, for data in both directions: in and out.
81 END_DATA_SENTINEL = object()
82

83 # The WSGI callable. Stored here so that the protocol instances can get hold
84 # of the data.
85 APPLICATION = None
86

87

88 class H2Protocol(asyncio.Protocol):
89 def __init__(self):

(continues on next page)

1.4. Code Examples 43

hyper-h2, Release 4.1.0

(continued from previous page)

90 config = H2Configuration(client_side=False, header_encoding='utf-8')
91

92 # Our server-side state machine.
93 self.conn = H2Connection(config=config)
94

95 # The backing transport.
96 self.transport = None
97

98 # A dictionary of ``Stream`` objects, keyed by their stream ID. This
99 # makes it easy to route data to the correct WSGI application instance.

100 self.streams = {}
101

102 # A queue of data emitted by WSGI applications that has not yet been
103 # sent. Each stream may only have one chunk of data in either this
104 # queue or the flow_controlled_data dictionary at any one time.
105 self._stream_data = asyncio.Queue()
106

107 # Data that has been pulled off the queue that is for a stream blocked
108 # behind flow control limitations. This is used to avoid spinning on
109 # _stream_data queue when a stream cannot have its data sent. Data that
110 # cannot be sent on the connection when it is popped off the queue gets
111 # placed here until the stream flow control window opens up again.
112 self._flow_controlled_data = {}
113

114 # A reference to the loop in which this protocol runs. This is needed
115 # to synchronise up with background threads.
116 self._loop = asyncio.get_event_loop()
117

118 # Any streams that have been remotely reset. We keep track of these to
119 # ensure that we don't emit data from a WSGI application whose stream
120 # has been cancelled.
121 self._reset_streams = set()
122

123 # Keep track of the loop sending task so we can kill it when the
124 # connection goes away.
125 self._send_loop_task = None
126

127 def connection_made(self, transport):
128 """
129 The connection has been made. Here we need to save off our transport,
130 do basic HTTP/2 connection setup, and then start our data writing
131 coroutine.
132 """
133 self.transport = transport
134 self.conn.initiate_connection()
135 self.transport.write(self.conn.data_to_send())
136 self._send_loop_task = self._loop.create_task(self.sending_loop())
137

138 def connection_lost(self, exc):
139 """
140 With the end of the connection, we just want to cancel our data sending
141 coroutine.
142 """
143 self._send_loop_task.cancel()
144

145 def data_received(self, data):
146 """

(continues on next page)

44 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

147 Process inbound data.
148 """
149 events = self.conn.receive_data(data)
150

151 for event in events:
152 if isinstance(event, RequestReceived):
153 self.request_received(event)
154 elif isinstance(event, DataReceived):
155 self.data_frame_received(event)
156 elif isinstance(event, WindowUpdated):
157 self.window_opened(event)
158 elif isinstance(event, StreamEnded):
159 self.end_stream(event)
160 elif isinstance(event, StreamReset):
161 self.reset_stream(event)
162

163 outbound_data = self.conn.data_to_send()
164 if outbound_data:
165 self.transport.write(outbound_data)
166

167 def window_opened(self, event):
168 """
169 The flow control window got opened.
170

171 This is important because it's possible that we were unable to send
172 some WSGI data because the flow control window was too small. If that
173 happens, the sending_loop coroutine starts buffering data.
174

175 As the window gets opened, we need to unbuffer the data. We do that by
176 placing the data chunks back on the back of the send queue and letting
177 the sending loop take another shot at sending them.
178

179 This system only works because we require that each stream only have
180 *one* data chunk in the sending queue at any time. The threading events
181 force this invariant to remain true.
182 """
183 if event.stream_id:
184 # This is specific to a single stream.
185 if event.stream_id in self._flow_controlled_data:
186 self._stream_data.put_nowait(
187 self._flow_controlled_data.pop(event.stream_id)
188)
189 else:
190 # This event is specific to the connection. Free up *all* the
191 # streams. This is a bit tricky, but we *must not* yield the flow
192 # of control here or it all goes wrong.
193 for data in self._flow_controlled_data.values():
194 self._stream_data.put_nowait(data)
195

196 self._flow_controlled_data = {}
197

198 @asyncio.coroutine
199 def sending_loop(self):
200 """
201 A call that loops forever, attempting to send data. This sending loop
202 contains most of the flow-control smarts of this class: it pulls data
203 off of the asyncio queue and then attempts to send it.

(continues on next page)

1.4. Code Examples 45

hyper-h2, Release 4.1.0

(continued from previous page)

204

205 The difficulties here are all around flow control. Specifically, a
206 chunk of data may be too large to send. In this case, what will happen
207 is that this coroutine will attempt to send what it can and will then
208 store the unsent data locally. When a flow control event comes in that
209 data will be freed up and placed back onto the asyncio queue, causing
210 it to pop back up into the sending logic of this coroutine.
211

212 This method explicitly *does not* handle HTTP/2 priority. That adds an
213 extra layer of complexity to what is already a fairly complex method,
214 and we'll look at how to do it another time.
215

216 This coroutine explicitly *does not end*.
217 """
218 while True:
219 stream_id, data, event = yield from self._stream_data.get()
220

221 # If this stream got reset, just drop the data on the floor. Note
222 # that we need to reset the event here to make sure that
223 # application doesn't lock up.
224 if stream_id in self._reset_streams:
225 event.set()
226

227 # Check if the body is done. If it is, this is really easy! Again,
228 # we *must* set the event here or the application will lock up.
229 if data is END_DATA_SENTINEL:
230 self.conn.end_stream(stream_id)
231 self.transport.write(self.conn.data_to_send())
232 event.set()
233 continue
234

235 # We need to send data, but not to exceed the flow control window.
236 # For that reason, grab only the data that fits: we'll buffer the
237 # rest.
238 window_size = self.conn.local_flow_control_window(stream_id)
239 chunk_size = min(window_size, len(data))
240 data_to_send = data[:chunk_size]
241 data_to_buffer = data[chunk_size:]
242

243 if data_to_send:
244 # There's a maximum frame size we have to respect. Because we
245 # aren't paying any attention to priority here, we can quite
246 # safely just split this string up into chunks of max frame
247 # size and blast them out.
248 #
249 # In a *real* application you'd want to consider priority here.
250 max_size = self.conn.max_outbound_frame_size
251 chunks = (
252 data_to_send[x:x+max_size]
253 for x in range(0, len(data_to_send), max_size)
254)
255 for chunk in chunks:
256 self.conn.send_data(stream_id, chunk)
257 self.transport.write(self.conn.data_to_send())
258

259 # If there's data left to buffer, we should do that. Put it in a
260 # dictionary and *don't set the event*: the app must not generate

(continues on next page)

46 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

261 # any more data until we got rid of all of this data.
262 if data_to_buffer:
263 self._flow_controlled_data[stream_id] = (
264 stream_id, data_to_buffer, event
265)
266 else:
267 # We sent everything. We can let the WSGI app progress.
268 event.set()
269

270 def request_received(self, event):
271 """
272 A HTTP/2 request has been received. We need to invoke the WSGI
273 application in a background thread to handle it.
274 """
275 # First, we are going to want an object to hold all the relevant state
276 # for this request/response. For that, we have a stream object. We
277 # need to store the stream object somewhere reachable for when data
278 # arrives later.
279 s = Stream(event.stream_id, self)
280 self.streams[event.stream_id] = s
281

282 # Next, we need to build the WSGI environ dictionary.
283 environ = _build_environ_dict(event.headers, s)
284

285 # Finally, we want to throw these arguments out to a threadpool and
286 # let it run.
287 self._loop.run_in_executor(
288 None,
289 s.run_in_threadpool,
290 APPLICATION,
291 environ,
292)
293

294 def data_frame_received(self, event):
295 """
296 Data has been received by WSGI server and needs to be dispatched to a
297 running application.
298

299 Note that the flow control window is not modified here. That's
300 deliberate: see Stream.__next__ for a longer discussion of why.
301 """
302 # Grab the stream in question from our dictionary and pass it on.
303 stream = self.streams[event.stream_id]
304 stream.receive_data(event.data, event.flow_controlled_length)
305

306 def end_stream(self, event):
307 """
308 The stream data is complete.
309 """
310 stream = self.streams[event.stream_id]
311 stream.request_complete()
312

313 def reset_stream(self, event):
314 """
315 A stream got forcefully reset.
316

317 This is a tricky thing to deal with because WSGI doesn't really have a
(continues on next page)

1.4. Code Examples 47

hyper-h2, Release 4.1.0

(continued from previous page)

318 good notion for it. Essentially, you have to let the application run
319 until completion, but not actually let it send any data.
320

321 We do that by discarding any data we currently have for it, and then
322 marking the stream as reset to allow us to spot when that stream is
323 trying to send data and drop that data on the floor.
324

325 We then *also* signal the WSGI application that no more data is
326 incoming, to ensure that it does not attempt to do further reads of the
327 data.
328 """
329 if event.stream_id in self._flow_controlled_data:
330 del self._flow_controlled_data
331

332 self._reset_streams.add(event.stream_id)
333 self.end_stream(event)
334

335 def data_for_stream(self, stream_id, data):
336 """
337 Thread-safe method called from outside the main asyncio thread in order
338 to send data on behalf of a WSGI application.
339

340 Places data being written by a stream on an asyncio queue. Returns a
341 threading event that will fire when that data is sent.
342 """
343 event = threading.Event()
344 self._loop.call_soon_threadsafe(
345 self._stream_data.put_nowait,
346 (stream_id, data, event)
347)
348 return event
349

350 def send_response(self, stream_id, headers):
351 """
352 Thread-safe method called from outside the main asyncio thread in order
353 to send the HTTP response headers on behalf of a WSGI application.
354

355 Returns a threading event that will fire when the headers have been
356 emitted to the network.
357 """
358 event = threading.Event()
359

360 def _inner_send(stream_id, headers, event):
361 self.conn.send_headers(stream_id, headers, end_stream=False)
362 self.transport.write(self.conn.data_to_send())
363 event.set()
364

365 self._loop.call_soon_threadsafe(
366 _inner_send,
367 stream_id,
368 headers,
369 event
370)
371 return event
372

373 def open_flow_control_window(self, stream_id, increment):
374 """

(continues on next page)

48 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

375 Opens a flow control window for the given stream by the given amount.
376 Called from a WSGI thread. Does not return an event because there's no
377 need to block on this action, it may take place at any time.
378 """
379 def _inner_open(stream_id, increment):
380 self.conn.increment_flow_control_window(increment, stream_id)
381 self.conn.increment_flow_control_window(increment, None)
382 self.transport.write(self.conn.data_to_send())
383

384 self._loop.call_soon_threadsafe(
385 _inner_open,
386 stream_id,
387 increment,
388)
389

390

391 class Stream:
392 """
393 This class holds all of the state for a single stream. It also provides
394 several of the callables used by the WSGI application. Finally, it provides
395 the logic for actually interfacing with the WSGI application.
396

397 For these reasons, the object has *strict* requirements on thread-safety.
398 While the object can be initialized in the main WSGI thread, the
399 ``run_in_threadpool`` method *must* be called from outside that thread. At
400 that point, the main WSGI thread may only call specific methods.
401 """
402 def __init__(self, stream_id, protocol):
403 self.stream_id = stream_id
404 self._protocol = protocol
405

406 # Queue for data that has been received from the network. This is a
407 # thread-safe queue, to allow both the WSGI application to block on
408 # receiving more data and to allow the asyncio server to keep sending
409 # more data.
410 #
411 # This queue is unbounded in size, but in practice it cannot contain
412 # too much data because the flow control window doesn't get adjusted
413 # unless data is removed from it.
414 self._received_data = queue.Queue()
415

416 # This buffer is used to hold partial chunks of data from
417 # _received_data that were not returned out of ``read`` and friends.
418 self._temp_buffer = b''
419

420 # Temporary variables that allow us to keep hold of the headers and
421 # response status until such time as the application needs us to send
422 # them.
423 self._response_status = b''
424 self._response_headers = []
425 self._headers_emitted = False
426

427 # Whether the application has received all the data from the network
428 # or not. This allows us to short-circuit some reads.
429 self._complete = False
430

431 def receive_data(self, data, flow_controlled_size):
(continues on next page)

1.4. Code Examples 49

hyper-h2, Release 4.1.0

(continued from previous page)

432 """
433 Called by the H2Protocol when more data has been received from the
434 network.
435

436 Places the data directly on the queue in a thread-safe manner without
437 blocking. Does not introspect or process the data.
438 """
439 self._received_data.put_nowait((data, flow_controlled_size))
440

441 def request_complete(self):
442 """
443 Called by the H2Protocol when all the request data has been received.
444

445 This works by placing the ``END_DATA_SENTINEL`` on the queue. The
446 reading code knows, when it sees the ``END_DATA_SENTINEL``, to expect
447 no more data from the network. This ensures that the state of the
448 application only changes when it has finished processing the data from
449 the network, even though the server may have long-since finished
450 receiving all the data for this request.
451 """
452 self._received_data.put_nowait((END_DATA_SENTINEL, None))
453

454 def run_in_threadpool(self, wsgi_application, environ):
455 """
456 This method should be invoked in a threadpool. At the point this method
457 is invoked, the only safe methods to call from the original thread are
458 ``receive_data`` and ``request_complete``: any other method is unsafe.
459

460 This method handles the WSGI logic. It invokes the application callable
461 in this thread, passing control over to the WSGI application. It then
462 ensures that the data makes it back to the HTTP/2 connection via
463 the thread-safe APIs provided below.
464 """
465 result = wsgi_application(environ, self.start_response)
466

467 try:
468 for data in result:
469 self.write(data)
470 finally:
471 # This signals that we're done with data. The server will know that
472 # this allows it to clean up its state: we're done here.
473 self.write(END_DATA_SENTINEL)
474

475 # The next few methods are called by the WSGI application. Firstly, the
476 # three methods provided by the input stream.
477 def read(self, size=None):
478 """
479 Called by the WSGI application to read data.
480

481 This method is the one of two that explicitly pumps the input data
482 queue, which means it deals with the ``_complete`` flag and the
483 ``END_DATA_SENTINEL``.
484 """
485 # If we've already seen the END_DATA_SENTINEL, return immediately.
486 if self._complete:
487 return b''
488

(continues on next page)

50 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

489 # If we've been asked to read everything, just iterate over ourselves.
490 if size is None:
491 return b''.join(self)
492

493 # Otherwise, as long as we don't have enough data, spin looking for
494 # another data chunk.
495 data = b''
496 while len(data) < size:
497 try:
498 chunk = next(self)
499 except StopIteration:
500 break
501

502 # Concatenating strings this way is slow, but that's ok, this is
503 # just a demo.
504 data += chunk
505

506 # We have *at least* enough data to return, but we may have too much.
507 # If we do, throw it on a buffer: we'll use it later.
508 to_return = data[:size]
509 self._temp_buffer = data[size:]
510 return to_return
511

512 def readline(self, hint=None):
513 """
514 Called by the WSGI application to read a single line of data.
515

516 This method rigorously observes the ``hint`` parameter: it will only
517 ever read that much data. It then splits the data on a newline
518 character and throws everything it doesn't need into a buffer.
519 """
520 data = self.read(hint)
521 first_newline = data.find(b'\n')
522 if first_newline == -1:
523 # No newline, return all the data
524 return data
525

526 # We want to slice the data so that the head *includes* the first
527 # newline. Then, any data left in this line we don't care about should
528 # be prepended to the internal buffer.
529 head, tail = data[:first_newline + 1], data[first_newline + 1:]
530 self._temp_buffer = tail + self._temp_buffer
531

532 return head
533

534 def readlines(self, hint=None):
535 """
536 Called by the WSGI application to read several lines of data.
537

538 This method is really pretty stupid. It rigorously observes the
539 ``hint`` parameter, and quite happily returns the input split into
540 lines.
541 """
542 # This method is *crazy inefficient*, but it's also a pretty stupid
543 # method to call.
544 data = self.read(hint)
545 lines = data.split(b'\n')

(continues on next page)

1.4. Code Examples 51

hyper-h2, Release 4.1.0

(continued from previous page)

546

547 # Split removes the newline character, but we want it, so put it back.
548 lines = [line + b'\n' for line in lines]
549

550 # Except if the last character was a newline character we now have an
551 # extra line that is just a newline: pull that out.
552 if lines[-1] == b'\n':
553 lines = lines[:-1]
554 return lines
555

556 def start_response(self, status, response_headers, exc_info=None):
557 """
558 This is the PEP-3333 mandated start_response callable.
559

560 All it does is store the headers for later sending, and return our
561 ```write`` callable.
562 """
563 if self._headers_emitted and exc_info is not None:
564 raise exc_info[1].with_traceback(exc_info[2])
565

566 assert not self._response_status or exc_info is not None
567 self._response_status = status
568 self._response_headers = response_headers
569

570 return self.write
571

572 def write(self, data):
573 """
574 Provides some data to write.
575

576 This function *blocks* until such time as the data is allowed by
577 HTTP/2 flow control. This allows a client to slow or pause the response
578 as needed.
579

580 This function is not supposed to be used, according to PEP-3333, but
581 once we have it it becomes quite convenient to use it, so this app
582 actually runs all writes through this function.
583 """
584 if not self._headers_emitted:
585 self._emit_headers()
586 event = self._protocol.data_for_stream(self.stream_id, data)
587 event.wait()
588 return
589

590 def _emit_headers(self):
591 """
592 Sends the response headers.
593

594 This is only called from the write callable and should only ever be
595 called once. It does some minor processing (converts the status line
596 into a status code because reason phrases are evil) and then passes
597 the headers on to the server. This call explicitly blocks until the
598 server notifies us that the headers have reached the network.
599 """
600 assert self._response_status and self._response_headers
601 assert not self._headers_emitted
602 self._headers_emitted = True

(continues on next page)

52 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

603

604 # We only need the status code
605 status = self._response_status.split(" ", 1)[0]
606 headers = [(":status", status)]
607 headers.extend(self._response_headers)
608 event = self._protocol.send_response(self.stream_id, headers)
609 event.wait()
610 return
611

612 # These two methods implement the iterator protocol. This allows a WSGI
613 # application to iterate over this Stream object to get the data.
614 def __iter__(self):
615 return self
616

617 def __next__(self):
618 # If the complete request has been read, abort immediately.
619 if self._complete:
620 raise StopIteration()
621

622 # If we have data stored in a temporary buffer for any reason, return
623 # that and clear the buffer.
624 #
625 # This can actually only happen when the application uses one of the
626 # read* callables, but that's fine.
627 if self._temp_buffer:
628 buffered_data = self._temp_buffer
629 self._temp_buffer = b''
630 return buffered_data
631

632 # Otherwise, pull data off the queue (blocking as needed). If this is
633 # the end of the request, we're done here: mark ourselves as complete
634 # and call it time. Otherwise, open the flow control window an
635 # appropriate amount and hand the chunk off.
636 chunk, chunk_size = self._received_data.get()
637 if chunk is END_DATA_SENTINEL:
638 self._complete = True
639 raise StopIteration()
640

641 # Let's talk a little bit about why we're opening the flow control
642 # window *here*, and not in the server thread.
643 #
644 # The purpose of HTTP/2 flow control is to allow for servers and
645 # clients to avoid needing to buffer data indefinitely because their
646 # peer is producing data faster than they can consume it. As a result,
647 # it's important that the flow control window be opened as late in the
648 # processing as possible. In this case, we open the flow control window
649 # exactly when the server hands the data to the application. This means
650 # that the flow control window essentially signals to the remote peer
651 # how much data hasn't even been *seen* by the application yet.
652 #
653 # If you wanted to be really clever you could consider not opening the
654 # flow control window until the application asks for the *next* chunk
655 # of data. That means that any buffers at the application level are now
656 # included in the flow control window processing. In my opinion, the
657 # advantage of that process does not outweigh the extra logical
658 # complexity involved in doing it, so we don't bother here.
659 #

(continues on next page)

1.4. Code Examples 53

hyper-h2, Release 4.1.0

(continued from previous page)

660 # Another note: you'll notice that we don't include the _temp_buffer in
661 # our flow control considerations. This means you could in principle
662 # lead us to buffer slightly more than one connection flow control
663 # window's worth of data. That risk is considered acceptable for the
664 # much simpler logic available here.
665 #
666 # Finally, this is a pretty dumb flow control window management scheme:
667 # it causes us to emit a *lot* of window updates. A smarter server
668 # would want to use the content-length header to determine whether
669 # flow control window updates need to be emitted at all, and then to be
670 # more efficient about emitting them to avoid firing them off really
671 # frequently. For an example like this, there's very little gained by
672 # worrying about that.
673 self._protocol.open_flow_control_window(self.stream_id, chunk_size)
674

675 return chunk
676

677

678 def _build_environ_dict(headers, stream):
679 """
680 Build the WSGI environ dictionary for a given request. To do that, we'll
681 temporarily create a dictionary for the headers. While this isn't actually
682 a valid way to represent headers, we know that the special headers we need
683 can only have one appearance in the block.
684

685 This code is arguably somewhat incautious: the conversion to dictionary
686 should only happen in a way that allows us to correctly join headers that
687 appear multiple times. That's acceptable in a demo app: in a productised
688 version you'd want to fix it.
689 """
690 header_dict = dict(headers)
691 path = header_dict.pop(u':path')
692 try:
693 path, query = path.split(u'?', 1)
694 except ValueError:
695 query = u""
696 server_name = header_dict.pop(u':authority')
697 try:
698 server_name, port = server_name.split(u':', 1)
699 except ValueError as e:
700 port = "8443"
701

702 environ = {
703 u'REQUEST_METHOD': header_dict.pop(u':method'),
704 u'SCRIPT_NAME': u'',
705 u'PATH_INFO': path,
706 u'QUERY_STRING': query,
707 u'SERVER_NAME': server_name,
708 u'SERVER_PORT': port,
709 u'SERVER_PROTOCOL': u'HTTP/2',
710 u'HTTPS': u"on",
711 u'SSL_PROTOCOL': u'TLSv1.2',
712 u'wsgi.version': (1, 0),
713 u'wsgi.url_scheme': header_dict.pop(u':scheme'),
714 u'wsgi.input': stream,
715 u'wsgi.errors': sys.stderr,
716 u'wsgi.multithread': True,

(continues on next page)

54 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

717 u'wsgi.multiprocess': False,
718 u'wsgi.run_once': False,
719 }
720 if u'content-type' in header_dict:
721 environ[u'CONTENT_TYPE'] = header_dict[u'content-type']
722 if u'content-length' in header_dict:
723 environ[u'CONTENT_LENGTH'] = header_dict[u'content-length']
724 for name, value in header_dict.items():
725 environ[u'HTTP_' + name.upper()] = value
726 return environ
727

728

729 # Set up the WSGI app.
730 application_string = sys.argv[1]
731 path, func = application_string.split(':', 1)
732 module = importlib.import_module(path)
733 APPLICATION = getattr(module, func)
734

735 # Set up TLS
736 ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
737 ssl_context.options |= (
738 ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 | ssl.OP_NO_COMPRESSION
739)
740 ssl_context.set_ciphers("ECDHE+AESGCM")
741 ssl_context.load_cert_chain(certfile="cert.crt", keyfile="cert.key")
742 ssl_context.set_alpn_protocols(["h2"])
743

744 # Do the asnycio bits
745 loop = asyncio.get_event_loop()
746 # Each client connection will create a new protocol instance
747 coro = loop.create_server(H2Protocol, '127.0.0.1', 8443, ssl=ssl_context)
748 server = loop.run_until_complete(coro)
749

750 # Serve requests until Ctrl+C is pressed
751 print('Serving on {}'.format(server.sockets[0].getsockname()))
752 try:
753 loop.run_forever()
754 except KeyboardInterrupt:
755 pass
756

757 # Close the server
758 server.close()
759 loop.run_until_complete(server.wait_closed())
760 loop.close()

1.4.2 Example Clients

Plain Sockets Example Client

This example is a basic HTTP/2 client written using plain Python sockets, and ssl TLS/SSL wrapper for socket objects.

This client is not a complete production-ready HTTP/2 client and only intended as a demonstration sample.

This example shows the bare minimum that is needed to send an HTTP/2 request to a server, and read back a response
body.

1.4. Code Examples 55

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/ssl.html

hyper-h2, Release 4.1.0

1 #!/usr/bin/env python3
2

3 """
4 plain_sockets_client.py
5 ~~~~~~~~~~~~~~~~~~~~~~~
6

7 Just enough code to send a GET request via h2 to an HTTP/2 server and receive a
→˓response body.

8 This is *not* a complete production-ready HTTP/2 client!
9 """

10

11 import socket
12 import ssl
13 import certifi
14

15 import h2.connection
16 import h2.events
17

18

19 SERVER_NAME = 'http2.golang.org'
20 SERVER_PORT = 443
21

22 # generic socket and ssl configuration
23 socket.setdefaulttimeout(15)
24 ctx = ssl.create_default_context(cafile=certifi.where())
25 ctx.set_alpn_protocols(['h2'])
26

27 # open a socket to the server and initiate TLS/SSL
28 s = socket.create_connection((SERVER_NAME, SERVER_PORT))
29 s = ctx.wrap_socket(s, server_hostname=SERVER_NAME)
30

31 c = h2.connection.H2Connection()
32 c.initiate_connection()
33 s.sendall(c.data_to_send())
34

35 headers = [
36 (':method', 'GET'),
37 (':path', '/reqinfo'),
38 (':authority', SERVER_NAME),
39 (':scheme', 'https'),
40]
41 c.send_headers(1, headers, end_stream=True)
42 s.sendall(c.data_to_send())
43

44 body = b''
45 response_stream_ended = False
46 while not response_stream_ended:
47 # read raw data from the socket
48 data = s.recv(65536 * 1024)
49 if not data:
50 break
51

52 # feed raw data into h2, and process resulting events
53 events = c.receive_data(data)
54 for event in events:
55 print(event)
56 if isinstance(event, h2.events.DataReceived):

(continues on next page)

56 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

57 # update flow control so the server doesn't starve us
58 c.acknowledge_received_data(event.flow_controlled_length, event.stream_id)
59 # more response body data received
60 body += event.data
61 if isinstance(event, h2.events.StreamEnded):
62 # response body completed, let's exit the loop
63 response_stream_ended = True
64 break
65 # send any pending data to the server
66 s.sendall(c.data_to_send())
67

68 print("Response fully received:")
69 print(body.decode())
70

71 # tell the server we are closing the h2 connection
72 c.close_connection()
73 s.sendall(c.data_to_send())
74

75 # close the socket
76 s.close()

Twisted Example Client: Head Requests

This example is a basic HTTP/2 client written for the Twisted asynchronous networking framework.

This client is fairly simple: it makes a hard-coded HEAD request to nghttp2.org/httpbin/ and prints out the response
data. Its purpose is to demonstrate how to write a very basic HTTP/2 client implementation.

1 # -*- coding: utf-8 -*-
2 """
3 head_request.py
4 ~~~~~~~~~~~~~~~
5

6 A short example that demonstrates a client that makes HEAD requests to certain
7 websites.
8

9 This example is intended as a reproduction of nghttp2 issue 396, for the
10 purposes of compatibility testing.
11 """
12 from __future__ import print_function
13

14 from twisted.internet import reactor
15 from twisted.internet.endpoints import connectProtocol, SSL4ClientEndpoint
16 from twisted.internet.protocol import Protocol
17 from twisted.internet.ssl import optionsForClientTLS
18 from hyperframe.frame import SettingsFrame
19 from h2.connection import H2Connection
20 from h2.events import (
21 ResponseReceived, DataReceived, StreamEnded,
22 StreamReset, SettingsAcknowledged,
23)
24

25

26 AUTHORITY = u'nghttp2.org'
27 PATH = '/httpbin/'

(continues on next page)

1.4. Code Examples 57

https://twistedmatrix.com/

hyper-h2, Release 4.1.0

(continued from previous page)

28 SIZE = 4096
29

30

31 class H2Protocol(Protocol):
32 def __init__(self):
33 self.conn = H2Connection()
34 self.known_proto = None
35 self.request_made = False
36

37 def connectionMade(self):
38 self.conn.initiate_connection()
39

40 # This reproduces the error in #396, by changing the header table size.
41 self.conn.update_settings({SettingsFrame.HEADER_TABLE_SIZE: SIZE})
42

43 self.transport.write(self.conn.data_to_send())
44

45 def dataReceived(self, data):
46 if not self.known_proto:
47 self.known_proto = self.transport.negotiatedProtocol
48 assert self.known_proto == b'h2'
49

50 events = self.conn.receive_data(data)
51

52 for event in events:
53 if isinstance(event, ResponseReceived):
54 self.handleResponse(event.headers, event.stream_id)
55 elif isinstance(event, DataReceived):
56 self.handleData(event.data, event.stream_id)
57 elif isinstance(event, StreamEnded):
58 self.endStream(event.stream_id)
59 elif isinstance(event, SettingsAcknowledged):
60 self.settingsAcked(event)
61 elif isinstance(event, StreamReset):
62 reactor.stop()
63 raise RuntimeError("Stream reset: %d" % event.error_code)
64 else:
65 print(event)
66

67 data = self.conn.data_to_send()
68 if data:
69 self.transport.write(data)
70

71 def settingsAcked(self, event):
72 # Having received the remote settings change, lets send our request.
73 if not self.request_made:
74 self.sendRequest()
75

76 def handleResponse(self, response_headers, stream_id):
77 for name, value in response_headers:
78 print("%s: %s" % (name.decode('utf-8'), value.decode('utf-8')))
79

80 print("")
81

82 def handleData(self, data, stream_id):
83 print(data, end='')
84

(continues on next page)

58 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

85 def endStream(self, stream_id):
86 self.conn.close_connection()
87 self.transport.write(self.conn.data_to_send())
88 self.transport.loseConnection()
89 reactor.stop()
90

91 def sendRequest(self):
92 request_headers = [
93 (':method', 'HEAD'),
94 (':authority', AUTHORITY),
95 (':scheme', 'https'),
96 (':path', PATH),
97]
98 self.conn.send_headers(1, request_headers, end_stream=True)
99 self.request_made = True

100

101 options = optionsForClientTLS(
102 hostname=AUTHORITY,
103 acceptableProtocols=[b'h2'],
104)
105

106 connectProtocol(
107 SSL4ClientEndpoint(reactor, AUTHORITY, 443, options),
108 H2Protocol()
109)
110 reactor.run()

Twisted Example Client: Post Requests

This example is a basic HTTP/2 client written for the Twisted asynchronous networking framework.

This client is fairly simple: it makes a hard-coded POST request to nghttp2.org/httpbin/post and prints out the response
data, sending a file that is provided on the command line or the script itself. Its purpose is to demonstrate how to write
a HTTP/2 client implementation that handles flow control.

1 # -*- coding: utf-8 -*-
2 """
3 post_request.py
4 ~~~~~~~~~~~~~~~
5

6 A short example that demonstrates a client that makes POST requests to certain
7 websites.
8

9 This example is intended to demonstrate how to handle uploading request bodies.
10 In this instance, a file will be uploaded. In order to handle arbitrary files,
11 this example also demonstrates how to obey HTTP/2 flow control rules.
12

13 Takes one command-line argument: a path to a file in the filesystem to upload.
14 If none is present, uploads this file.
15 """
16 from __future__ import print_function
17

18 import mimetypes
19 import os
20 import sys

(continues on next page)

1.4. Code Examples 59

https://twistedmatrix.com/

hyper-h2, Release 4.1.0

(continued from previous page)

21

22 from twisted.internet import reactor, defer
23 from twisted.internet.endpoints import connectProtocol, SSL4ClientEndpoint
24 from twisted.internet.protocol import Protocol
25 from twisted.internet.ssl import optionsForClientTLS
26 from h2.connection import H2Connection
27 from h2.events import (
28 ResponseReceived, DataReceived, StreamEnded, StreamReset, WindowUpdated,
29 SettingsAcknowledged,
30)
31

32

33 AUTHORITY = u'nghttp2.org'
34 PATH = '/httpbin/post'
35

36

37 class H2Protocol(Protocol):
38 def __init__(self, file_path):
39 self.conn = H2Connection()
40 self.known_proto = None
41 self.request_made = False
42 self.request_complete = False
43 self.file_path = file_path
44 self.flow_control_deferred = None
45 self.fileobj = None
46 self.file_size = None
47

48 def connectionMade(self):
49 """
50 Called by Twisted when the TCP connection is established. We can start
51 sending some data now: we should open with the connection preamble.
52 """
53 self.conn.initiate_connection()
54 self.transport.write(self.conn.data_to_send())
55

56 def dataReceived(self, data):
57 """
58 Called by Twisted when data is received on the connection.
59

60 We need to check a few things here. Firstly, we want to validate that
61 we actually negotiated HTTP/2: if we didn't, we shouldn't proceed!
62

63 Then, we want to pass the data to the protocol stack and check what
64 events occurred.
65 """
66 if not self.known_proto:
67 self.known_proto = self.transport.negotiatedProtocol
68 assert self.known_proto == b'h2'
69

70 events = self.conn.receive_data(data)
71

72 for event in events:
73 if isinstance(event, ResponseReceived):
74 self.handleResponse(event.headers)
75 elif isinstance(event, DataReceived):
76 self.handleData(event.data)
77 elif isinstance(event, StreamEnded):

(continues on next page)

60 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

78 self.endStream()
79 elif isinstance(event, SettingsAcknowledged):
80 self.settingsAcked(event)
81 elif isinstance(event, StreamReset):
82 reactor.stop()
83 raise RuntimeError("Stream reset: %d" % event.error_code)
84 elif isinstance(event, WindowUpdated):
85 self.windowUpdated(event)
86

87 data = self.conn.data_to_send()
88 if data:
89 self.transport.write(data)
90

91 def settingsAcked(self, event):
92 """
93 Called when the remote party ACKs our settings. We send a SETTINGS
94 frame as part of the preamble, so if we want to be very polite we can
95 wait until the ACK for that frame comes before we start sending our
96 request.
97 """
98 if not self.request_made:
99 self.sendRequest()

100

101 def handleResponse(self, response_headers):
102 """
103 Handle the response by printing the response headers.
104 """
105 for name, value in response_headers:
106 print("%s: %s" % (name.decode('utf-8'), value.decode('utf-8')))
107

108 print("")
109

110 def handleData(self, data):
111 """
112 We handle data that's received by just printing it.
113 """
114 print(data, end='')
115

116 def endStream(self):
117 """
118 We call this when the stream is cleanly ended by the remote peer. That
119 means that the response is complete.
120

121 Because this code only makes a single HTTP/2 request, once we receive
122 the complete response we can safely tear the connection down and stop
123 the reactor. We do that as cleanly as possible.
124 """
125 self.request_complete = True
126 self.conn.close_connection()
127 self.transport.write(self.conn.data_to_send())
128 self.transport.loseConnection()
129

130 def windowUpdated(self, event):
131 """
132 We call this when the flow control window for the connection or the
133 stream has been widened. If there's a flow control deferred present
134 (that is, if we're blocked behind the flow control), we fire it.

(continues on next page)

1.4. Code Examples 61

hyper-h2, Release 4.1.0

(continued from previous page)

135 Otherwise, we do nothing.
136 """
137 if self.flow_control_deferred is None:
138 return
139

140 # Make sure we remove the flow control deferred to avoid firing it
141 # more than once.
142 flow_control_deferred = self.flow_control_deferred
143 self.flow_control_deferred = None
144 flow_control_deferred.callback(None)
145

146 def connectionLost(self, reason=None):
147 """
148 Called by Twisted when the connection is gone. Regardless of whether
149 it was clean or not, we want to stop the reactor.
150 """
151 if self.fileobj is not None:
152 self.fileobj.close()
153

154 if reactor.running:
155 reactor.stop()
156

157 def sendRequest(self):
158 """
159 Send the POST request.
160

161 A POST request is made up of one headers frame, and then 0+ data
162 frames. This method begins by sending the headers, and then starts a
163 series of calls to send data.
164 """
165 # First, we need to work out how large the file is.
166 self.file_size = os.stat(self.file_path).st_size
167

168 # Next, we want to guess a content-type and content-encoding.
169 content_type, content_encoding = mimetypes.guess_type(self.file_path)
170

171 # Now we can build a header block.
172 request_headers = [
173 (':method', 'POST'),
174 (':authority', AUTHORITY),
175 (':scheme', 'https'),
176 (':path', PATH),
177 ('content-length', str(self.file_size)),
178]
179

180 if content_type is not None:
181 request_headers.append(('content-type', content_type))
182

183 if content_encoding is not None:
184 request_headers.append(('content-encoding', content_encoding))
185

186 self.conn.send_headers(1, request_headers)
187 self.request_made = True
188

189 # We can now open the file.
190 self.fileobj = open(self.file_path, 'rb')
191

(continues on next page)

62 Chapter 1. Contents

hyper-h2, Release 4.1.0

(continued from previous page)

192 # We now need to send all the relevant data. We do this by checking
193 # what the acceptable amount of data is to send, and sending it. If we
194 # find ourselves blocked behind flow control, we then place a deferred
195 # and wait until that deferred fires.
196 self.sendFileData()
197

198 def sendFileData(self):
199 """
200 Send some file data on the connection.
201 """
202 # Firstly, check what the flow control window is for stream 1.
203 window_size = self.conn.local_flow_control_window(stream_id=1)
204

205 # Next, check what the maximum frame size is.
206 max_frame_size = self.conn.max_outbound_frame_size
207

208 # We will send no more than the window size or the remaining file size
209 # of data in this call, whichever is smaller.
210 bytes_to_send = min(window_size, self.file_size)
211

212 # We now need to send a number of data frames.
213 while bytes_to_send > 0:
214 chunk_size = min(bytes_to_send, max_frame_size)
215 data_chunk = self.fileobj.read(chunk_size)
216 self.conn.send_data(stream_id=1, data=data_chunk)
217

218 bytes_to_send -= chunk_size
219 self.file_size -= chunk_size
220

221 # We've prepared a whole chunk of data to send. If the file is fully
222 # sent, we also want to end the stream: we're done here.
223 if self.file_size == 0:
224 self.conn.end_stream(stream_id=1)
225 else:
226 # We've still got data left to send but the window is closed. Save
227 # a Deferred that will call us when the window gets opened.
228 self.flow_control_deferred = defer.Deferred()
229 self.flow_control_deferred.addCallback(self.sendFileData)
230

231 self.transport.write(self.conn.data_to_send())
232

233

234 try:
235 filename = sys.argv[1]
236 except IndexError:
237 filename = __file__
238

239 options = optionsForClientTLS(
240 hostname=AUTHORITY,
241 acceptableProtocols=[b'h2'],
242)
243

244 connectProtocol(
245 SSL4ClientEndpoint(reactor, AUTHORITY, 443, options),
246 H2Protocol(filename)
247)
248 reactor.run()

1.4. Code Examples 63

hyper-h2, Release 4.1.0

1.5 Advanced Usage

1.5.1 Priority

New in version 2.0.0.

RFC 7540 has a fairly substantial and complex section describing how to build a HTTP/2 priority tree, and the effect
that should have on sending data from a server.

h2 does not enforce any priority logic by default for servers. This is because scheduling data sends is outside the scope
of this library, as it likely requires fairly substantial understanding of the scheduler being used.

However, for servers that do want to follow the priority recommendations given by clients, the Hyper project provides
an implementation of the RFC 7540 priority tree that will be useful to plug into a server. That, combined with the
PriorityUpdated event from this library, can be used to build a server that conforms to RFC 7540’s recommen-
dations for priority handling.

1.5.2 Related Events

New in version 2.4.0.

In the 2.4.0 release h2 added support for signaling “related events”. These are a HTTP/2-only construct that exist be-
cause certain HTTP/2 events can occur simultaneously: that is, one HTTP/2 frame can cause multiple state transitions
to occur at the same time. One example of this is a HEADERS frame that contains priority information and carries
the END_STREAM flag: this would cause three events to fire (one of the various request/response received events, a
PriorityUpdated event, and a StreamEnded event).

Ordinarily h2’s logic will emit those events to you one at a time. This means that you may attempt to process, for
example, a DataReceived event, not knowing that the next event out will be a StreamEnded event. h2 does
know this, however, and so will forbid you from taking certain actions that are a violation of the HTTP/2 protocol.

To avoid this asymmetry of information, events that can occur simultaneously now carry properties for their “related
events”. These allow users to find the events that can have occurred simultaneously with each other before the event
is emitted by h2. The following objects have “related events”:

• RequestReceived:

– stream_ended: any StreamEnded event that occurred at the same time as receiving this request.

– priority_updated: any PriorityUpdated event that occurred at the same time as receiving this
request.

• ResponseReceived:

– stream_ended: any StreamEnded event that occurred at the same time as receiving this response.

– priority_updated: any PriorityUpdated event that occurred at the same time as receiving this
response.

• TrailersReceived:

– stream_ended: any StreamEnded event that occurred at the same time as receiving this set of trail-
ers. This will always be present for trailers, as they must terminate streams.

– priority_updated: any PriorityUpdated event that occurred at the same time as receiving this
response.

• InformationalResponseReceived:

– priority_updated: any PriorityUpdated event that occurred at the same time as receiving this
informational response.

64 Chapter 1. Contents

https://tools.ietf.org/html/rfc7540
http://python-hyper.org/projects/priority/en/latest/
https://tools.ietf.org/html/rfc7540

hyper-h2, Release 4.1.0

• DataReceived:

– stream_ended: any StreamEnded event that occurred at the same time as receiving this data.

Warning: h2 does not know if you are looking for related events or expecting to find events in the event stream.
Therefore, it will always emit “related events” in the event stream. If you are using the “related events” event
pattern, you will want to be careful to avoid double-processing related events.

1.5.3 Connections: Advanced

Thread Safety

H2Connection objects are not thread-safe. They cannot safely be accessed from multiple threads at once. This is
a deliberate design decision: it is not trivially possible to design the H2Connection object in a way that would be
either lock-free or have the locks at a fine granularity.

Your implementations should bear this in mind, and handle it appropriately. It should be simple enough to use locking
alongside the H2Connection: simply lock around the connection object itself. Because the H2Connection
object does no I/O it should be entirely safe to do that. Alternatively, have a single thread take ownership of the
H2Connection and use a message-passing interface to serialize access to the H2Connection.

If you are using a non-threaded concurrency approach (e.g. Twisted), this should not affect you.

Internal Buffers

In order to avoid doing I/O, the H2Connection employs an internal buffer. This buffer is unbounded in size: it
can potentially grow infinitely. This means that, if you are not making sure to regularly empty it, you are at risk of
exceeding the memory limit of a single process and finding your program crashes.

It is highly recommended that you send data at regular intervals, ideally as soon as possible.

Sending Data

When sending data on the network, it’s important to remember that you may not be able to send an unbounded amount
of data at once. Particularly when using TCP, it is often the case that there are limits on how much data may be in flight
at any one time. These limits can be very low, and your operating system will only buffer so much data in memory
before it starts to complain.

For this reason, it is possible to consume only a subset of the data available when you call data_to_send. However,
once you have pulled the data out of the H2Connection internal buffer, it is not possible to put it back on again.
For that reason, it is advisable that you confirm how much space is available in the OS buffer before sending.

Alternatively, use tools made available by your framework. For example, the Python standard library socket module
provides a sendall method that will automatically block until all the data has been sent. This will enable you to
always use the unbounded form of data_to_send, and will help you avoid subtle bugs.

When To Send

In addition to knowing how much data to send (see Sending Data) it is important to know when to send data. For h2,
this amounts to knowing when to call data_to_send.

h2 may write data into its send buffer at two times. The first is whenever receive_data is called. This data is sent
in response to some control frames that require no user input: for example, responding to PING frames. The second

1.5. Advanced Usage 65

https://docs.python.org/3/library/socket.html#module-socket
https://docs.python.org/3/library/socket.html#socket.socket.sendall

hyper-h2, Release 4.1.0

time is in response to user action: whenever a user calls a method like send_headers, data may be written into the
buffer.

In a standard design for a h2 consumer, then, that means there are two places where you’ll potentially want to send
data. The first is in your “receive data” loop. This is where you take the data you receive, pass it into receive_data,
and then dispatch events. For this loop, it is usually best to save sending data until the loop is complete: that allows
you to empty the buffer only once.

The other place you’ll want to send the data is when initiating requests or taking any other active, unprompted action
on the connection. In this instance, you’ll want to make all the relevant send_* calls, and then call data_to_send.

1.5.4 Headers

HTTP/2 defines several “special header fields” which are used to encode data that was previously sent in either the
request or status line of HTTP/1.1. These header fields are distinguished from ordinary header fields because their
field name begins with a : character. The special header fields defined in RFC 7540 are:

• :status

• :path

• :method

• :scheme

• :authority

RFC 7540 mandates that all of these header fields appear first in the header block, before the ordinary header fields.
This could cause difficulty if the send_headers method accepted a plain dict for the headers argument, be-
cause dict objects are unordered. For this reason, we require that you provide a list of two-tuples.

1.5.5 Flow Control

HTTP/2 defines a complex flow control system that uses a sliding window of data on both a per-stream and per-
connection basis. Essentially, each implementation allows its peer to send a specific amount of data at any time (the
“flow control window”) before it must stop. Each stream has a separate window, and the connection as a whole has
a window. Each window can be opened by an implementation by sending a WINDOW_UPDATE frame, either on a
specific stream (causing the window for that stream to be opened), or on stream 0, which causes the window for the
entire connection to be opened.

In HTTP/2, only data in DATA frames is flow controlled. All other frames are exempt from flow control. Each DATA
frame consumes both stream and connection flow control window bytes. This means that the maximum amount of
data that can be sent on any one stream before a WINDOW_UPDATE frame is received is the lower of the stream and
connection windows. The maximum amount of data that can be sent on all streams before a WINDOW_UPDATE frame
is received is the size of the connection flow control window.

Working With Flow Control

The amount of flow control window a DATA frame consumes is the sum of both its contained application
data and the amount of padding used. h2 shows this to the user in a DataReceived event by using the
flow_controlled_length field. When working with flow control in h2, users must use this field: simply
using len(datareceived.data) can eventually lead to deadlock.

When data has been received and given to the user in a DataReceived, it is the responsibility of the user to re-open
the flow control window when the user is ready for more data. h2 does not do this automatically to avoid flooding the
user with data: if we did, the remote peer could send unbounded amounts of data that the user would need to buffer
before processing.

66 Chapter 1. Contents

https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540

hyper-h2, Release 4.1.0

To re-open the flow control window, then, the user must call increment_flow_control_window with the
flow_controlled_length of the received data. h2 requires that you manage both the connection and the stream
flow control windows separately, so you may need to increment both the stream the data was received on and stream
0.

When sending data, a HTTP/2 implementation must not send more than flow control window available for that stream.
As noted above, the maximum amount of data that can be sent on the stream is the minimum of the stream and the
connection flow control windows. You can find out how much data you can send on a given stream by using the
local_flow_control_window method, which will do all of these calculations for you. If you attempt to send
more than this amount of data on a stream, h2 will throw a ProtocolError and refuse to send the data.

In h2, receiving a WINDOW_UPDATE frame causes a WindowUpdated event to fire. This will notify you that there
is potentially more room in a flow control window. Note that, just because an increment of a given size was received
does not mean that that much more data can be sent: remember that both the connection and stream flow control
windows constrain how much data can be sent.

As a result, when a WindowUpdated event fires with a non-zero stream ID, and the user has more data to send on
that stream, the user should call local_flow_control_window to check if there really is more room to send
data on that stream.

When a WindowUpdated event fires with a stream ID of 0, that may have unblocked all streams that are currently
blocked. The user should use local_flow_control_window to check all blocked streams to see if more data is
available.

Auto Flow Control

New in version 2.5.0.

In most cases, there is no advantage for users in managing their own flow control strategies. While particu-
lar high performance or specific-use-case applications may gain value from directly controlling the emission of
WINDOW_UPDATE frames, the average application can use a lowest-common-denominator strategy to emit those
frames. As of version 2.5.0, h2 now provides this automatic strategy for users, if they want to use it.

This automatic strategy is built around a single method: acknowledge_received_data. This method flags
to the connection object that your application has dealt with a certain number of flow controlled bytes, and that the
window should be incremented in some way. Whenever your application has “processed” some received bytes, this
method should be called to signal that they have been processed.

The key difference between this method and increment_flow_control_window is that the method
acknowledge_received_data does not guarantee that it will emit a WINDOW_UPDATE frame, and if it does it
will not necessarily emit them for only the stream or only the frame. Instead, the WINDOW_UPDATE frames will be
coalesced: they will be emitted only when a certain number of bytes have been freed up.

For most applications, this method should be preferred to the manual flow control mechanism.

1.6 Low-Level Details

Warning: This section of the documentation covers low-level implementation details of h2. This is most likely
to be of use to h2 developers and to other HTTP/2 implementers, though it could well be of general interest. Feel
free to peruse it, but if you’re looking for information about how to use h2 you should consider looking elsewhere.

1.6. Low-Level Details 67

hyper-h2, Release 4.1.0

1.6.1 State Machines

h2 is fundamentally built on top of a pair of interacting Finite State Machines. One of these FSMs manages per-
connection state, and another manages per-stream state. Almost without exception (see Priority for more details)
every single frame is unconditionally translated into events for both state machines and those state machines are
turned.

The advantages of a system such as this is that the finite state machines can very densely encode the kinds of things
that are allowed at any particular moment in a HTTP/2 connection. However, most importantly, almost all protocols
are defined in terms of finite state machines: that is, protocol descriptions can be reduced to a number of states and
inputs. That makes FSMs a very natural tool for implementing protocol stacks.

Indeed, most protocol implementations that do not explicitly encode a finite state machine almost always implicitly
encode a finite state machine, by using classes with a bunch of variables that amount to state-tracking variables, or by
using the call-stack as an implicit state tracking mechanism. While these methods are not immediately problematic,
they tend to lack explicitness, and can lead to subtle bugs of the form “protocol action X is incorrectly allowed in state
Y”.

For these reasons, we have implemented two explicit finite state machines. These machines aim to encode most of the
protocol-specific state, in particular regarding what frame is allowed at what time. This target goal is sometimes not
achieved: in particular, as of this writing the stream FSM contains a number of other state variables that really ought
to be rolled into the state machine itself in the form of new states, or in the form of a transformation of the FSM to use
state vectors instead of state scalars.

The following sections contain some implementers notes on these FSMs.

Connection State Machine

The “outer” state machine, the first one that is encountered when sending or receiving data, is the connection state
machine. This state machine tracks whole-connection state.

This state machine is primarily intended to forbid certain actions on the basis of whether the implementation is acting
as a client or a server. For example, clients are not permitted to send PUSH_PROMISE frames: this state machine
forbids that by refusing to define a valid transition from the CLIENT_OPEN state for the SEND_PUSH_PROMISE
event.

Otherwise, this particular state machine triggers no side-effects. It has a very coarse, high-level, functionality.

A visual representation of this FSM is shown below:

68 Chapter 1. Contents

hyper-h2, Release 4.1.0

Stream State Machine

Once the connection state machine has been spun, any frame that belongs to a stream is passed to the stream state
machine for its given stream. Each stream has its own instance of the state machine, but all of them share the transition
table: this is because the table itself is sufficiently large that having it be per-instance would be a ridiculous memory
overhead.

Unlike the connection state machine, the stream state machine is quite complex. This is because it frequently needs
to encode some side-effects. The most common side-effect is emitting a RST_STREAM frame when an error is
encountered: the need to do this means that far more transitions need to be encoded than for the connection state
machine.

Many of the side-effect functions in this state machine also raise ProtocolError exceptions. This is almost always
done on the basis of an extra state variable, which is an annoying code smell: it should always be possible for the state
machine itself to police these using explicit state management. A future refactor will hopefully address this problem
by making these additional state variables part of the state definitions in the FSM, which will lead to an expansion
of the number of states but a greater degree of simplicity in understanding and tracking what is going on in the state

1.6. Low-Level Details 69

_static/h2.connection.H2ConnectionStateMachine.dot.png

hyper-h2, Release 4.1.0

machine.

The other action taken by the side-effect functions defined here is returning events. Most of these events are returned
directly to the user, and reflect the specific state transition that has taken place, but some of the events are purely
internal: they are used to signal to other parts of the h2 codebase what action has been taken.

The major use of the internal events functionality at this time is for validating header blocks: there are different rules
for request headers than there are for response headers, and different rules again for trailers. The internal events are
used to determine exactly what kind of data the user is attempting to send, and using that information to do the correct
kind of validation. This approach ensures that the final source of truth about what’s happening at the protocol level
lives inside the FSM, which is an extremely important design principle we want to continue to enshrine in h2.

A visual representation of this FSM is shown below:

Priority

In the Stream State Machine section we said that any frame that belongs to a stream is passed to the stream state
machine. This turns out to be not quite true.

Specifically, while PRIORITY frames are technically sent on a given stream (that is, RFC 7540 Section 6.3 defines
them as “always identifying a stream” and forbids the use of stream ID 0 for them), in practice they are almost
completely exempt from the usual stream FSM behaviour. Specifically, the RFC has this to say:

The PRIORITY frame can be sent on a stream in any state, though it cannot be sent between consecutive
frames that comprise a single header block (Section 4.3).

Given that the consecutive header block requirement is handled outside of the FSMs, this section of the RFC essentially
means that there is never a situation where it is invalid to receive a PRIORITY frame. This means that including it in
the stream FSM would require that we allow SEND_PRIORITY and RECV_PRIORITY in all states.

This is not a totally onerous task: however, another key note is that h2 uses the absence of a stream state machine to
flag a closed stream. This is primarily for memory conservation reasons: if we needed to keep around an FSM for
every stream we’ve ever seen, that would cause long-lived HTTP/2 connections to consume increasingly large amounts
of memory. On top of this, it would require us to create a stream FSM each time we received a PRIORITY frame
for a given stream, giving a malicious peer an easy route to force a h2 user to allocate nearly unbounded amounts of
memory.

70 Chapter 1. Contents

_static/h2.stream.H2StreamStateMachine.dot.png
https://tools.ietf.org/html/rfc7540#section-6.3

hyper-h2, Release 4.1.0

For this reason, h2 circumvents the stream FSM entirely for PRIORITY frames. Instead, these frames are treated as
being connection-level frames that just happen to identify a specific stream. They do not bring streams into being,
or in any sense interact with h2’s view of streams. Their stream details are treated as strictly metadata that h2 is not
interested in beyond being able to parse it out.

1.7 h2 API

This document details the API of h2.

1.7.1 Semantic Versioning

h2 follows semantic versioning for its public API. Please note that the guarantees of semantic versioning apply only
to the API that is documented here. Simply because a method or data field is not prefaced by an underscore does not
make it part of h2’s public API. Anything not documented here is subject to change at any time.

1.7.2 Connection

class h2.connection.H2Connection(config=None)
A low-level HTTP/2 connection object. This handles building and receiving frames and maintains both connec-
tion and per-stream state for all streams on this connection.

This wraps a HTTP/2 Connection state machine implementation, ensuring that frames can only be sent/received
when the connection is in a valid state. It also builds stream state machines on demand to ensure that the
constraints of those state machines are met as well. Attempts to create frames that cannot be sent will raise a
ProtocolError.

Changed in version 2.3.0: Added the header_encoding keyword argument.

Changed in version 2.5.0: Added the config keyword argument. Deprecated the client_side and
header_encoding parameters.

Changed in version 3.0.0: Removed deprecated parameters and properties.

Parameters config (H2Configuration) – The configuration for the HTTP/2 connection.

New in version 2.5.0.

acknowledge_received_data(acknowledged_size, stream_id)
Inform the H2Connection that a certain number of flow-controlled bytes have been processed, and that
the space should be handed back to the remote peer at an opportune time.

New in version 2.5.0.

Parameters

• acknowledged_size (int) – The total flow-controlled size of the data that has been
processed. Note that this must include the amount of padding that was sent with that data.

• stream_id (int) – The ID of the stream on which this data was received.

Returns Nothing

Return type None

advertise_alternative_service(field_value, origin=None, stream_id=None)
Notify a client about an available Alternative Service.

1.7. h2 API 71

hyper-h2, Release 4.1.0

An Alternative Service is defined in RFC 7838. An Alternative Service notification informs a client that a
given origin is also available elsewhere.

Alternative Services can be advertised in two ways. Firstly, they can be advertised explicitly: that is, a
server can say “origin X is also available at Y”. To advertise like this, set the origin argument and not
the stream_id argument. Alternatively, they can be advertised implicitly: that is, a server can say “the
origin you’re contacting on stream X is also available at Y”. To advertise like this, set the stream_id
argument and not the origin argument.

The explicit method of advertising can be done as long as the connection is active. The implicit method
can only be done after the client has sent the request headers and before the server has sent the response
headers: outside of those points, h2 will forbid sending the Alternative Service advertisement by raising a
ProtocolError.

The field_value parameter is specified in RFC 7838. h2 does not validate or introspect this argu-
ment: the user is required to ensure that it’s well-formed. field_value corresponds to RFC 7838’s
“Alternative Service Field Value”.

Note: It is strongly preferred to use the explicit method of advertising Alternative Services. The implicit
method of advertising Alternative Services has a number of subtleties and can lead to inconsistencies
between the server and client. h2 allows both mechanisms, but caution is strongly advised.

New in version 2.3.0.

Parameters

• field_value (bytes) – The RFC 7838 Alternative Service Field Value. This argu-
ment is not introspected by h2: the user is responsible for ensuring that it is well-formed.

• origin (bytes or None) – The origin/authority to which the Alternative Service being
advertised applies. Must not be provided at the same time as stream_id.

• stream_id (int or None) – The ID of the stream which was sent to the authority for
which this Alternative Service advertisement applies. Must not be provided at the same
time as origin.

Returns Nothing.

clear_outbound_data_buffer()
Clears the outbound data buffer, such that if this call was immediately followed by a call to
data_to_send, that call would return no data.

This method should not normally be used, but is made available to avoid exposing implementation details.

close_connection(error_code=0, additional_data=None, last_stream_id=None)
Close a connection, emitting a GOAWAY frame.

Changed in version 2.4.0: Added additional_data and last_stream_id arguments.

Parameters

• error_code – (optional) The error code to send in the GOAWAY frame.

• additional_data – (optional) Additional debug data indicating a reason for closing
the connection. Must be a bytestring.

• last_stream_id – (optional) The last stream which was processed by the sender. De-
faults to highest_inbound_stream_id.

Returns Nothing

72 Chapter 1. Contents

https://tools.ietf.org/html/rfc7838

hyper-h2, Release 4.1.0

config = None
The configuration for this HTTP/2 connection object.

New in version 2.5.0.

data_to_send(amount=None)
Returns some data for sending out of the internal data buffer.

This method is analogous to read on a file-like object, but it doesn’t block. Instead, it returns as much
data as the user asks for, or less if that much data is not available. It does not perform any I/O, and so uses
a different name.

Parameters amount (int) – (optional) The maximum amount of data to return. If not set, or
set to None, will return as much data as possible.

Returns A bytestring containing the data to send on the wire.

Return type bytes

end_stream(stream_id)
Cleanly end a given stream.

This method ends a stream by sending an empty DATA frame on that stream with the END_STREAM flag
set.

Parameters stream_id (int) – The ID of the stream to end.

Returns Nothing

get_next_available_stream_id()
Returns an integer suitable for use as the stream ID for the next stream created by this endpoint. For server
endpoints, this stream ID will be even. For client endpoints, this stream ID will be odd. If no stream IDs
are available, raises NoAvailableStreamIDError.

Warning: The return value from this function does not change until the stream ID has actually been
used by sending or pushing headers on that stream. For that reason, it should be called as close as
possible to the actual use of the stream ID.

New in version 2.0.0.

Raises NoAvailableStreamIDError

Returns The next free stream ID this peer can use to initiate a stream.

Return type int

increment_flow_control_window(increment, stream_id=None)
Increment a flow control window, optionally for a single stream. Allows the remote peer to send more
data.

Changed in version 2.0.0: Rejects attempts to increment the flow control window by out of range values
with a ValueError.

Parameters

• increment (int) – The amount to increment the flow control window by.

• stream_id (int or None) – (optional) The ID of the stream that should have its flow
control window opened. If not present or None, the connection flow control window will
be opened instead.

Returns Nothing

1.7. h2 API 73

hyper-h2, Release 4.1.0

Raises ValueError

initiate_connection()
Provides any data that needs to be sent at the start of the connection. Must be called for both clients and
servers.

initiate_upgrade_connection(settings_header=None)
Call to initialise the connection object for use with an upgraded HTTP/2 connection (i.e. a connection
negotiated using the Upgrade: h2c HTTP header).

This method differs from initiate_connection in several ways. Firstly, it handles the additional
SETTINGS frame that is sent in the HTTP2-Settings header field. When called on a client connection,
this method will return a bytestring that the caller can put in the HTTP2-Settings field they send on
their initial request. When called on a server connection, the user must provide the value they received
from the client in the HTTP2-Settings header field to the settings_header argument, which will
be used appropriately.

Additionally, this method sets up stream 1 in a half-closed state appropriate for this side of the connection,
to reflect the fact that the request is already complete.

Finally, this method also prepares the appropriate preamble to be sent after the upgrade.

New in version 2.3.0.

Parameters settings_header (bytes) – (optional, server-only): The value of the
HTTP2-Settings header field received from the client.

Returns For clients, a bytestring to put in the HTTP2-Settings. For servers, returns nothing.

Return type bytes or None

local_flow_control_window(stream_id)
Returns the maximum amount of data that can be sent on stream stream_id.

This value will never be larger than the total data that can be sent on the connection: even if the given
stream allows more data, the connection window provides a logical maximum to the amount of data that
can be sent.

The maximum data that can be sent in a single data frame on a stream is either this value, or the maximum
frame size, whichever is smaller.

Parameters stream_id (int) – The ID of the stream whose flow control window is being
queried.

Returns The amount of data in bytes that can be sent on the stream before the flow control
window is exhausted.

Return type int

max_inbound_frame_size = None
The maximum size of a frame that can be received by this peer, in bytes.

max_outbound_frame_size = None
The maximum size of a frame that can be emitted by this peer, in bytes.

open_inbound_streams
The current number of open inbound streams.

open_outbound_streams
The current number of open outbound streams.

ping(opaque_data)
Send a PING frame.

74 Chapter 1. Contents

hyper-h2, Release 4.1.0

Parameters opaque_data – A bytestring of length 8 that will be sent in the PING frame.

Returns Nothing

prioritize(stream_id, weight=None, depends_on=None, exclusive=None)
Notify a server about the priority of a stream.

Stream priorities are a form of guidance to a remote server: they inform the server about how important a
given response is, so that the server may allocate its resources (e.g. bandwidth, CPU time, etc.) accord-
ingly. This exists to allow clients to ensure that the most important data arrives earlier, while less important
data does not starve out the more important data.

Stream priorities are explained in depth in RFC 7540 Section 5.3.

This method updates the priority information of a single stream. It may be called well before a stream is
actively in use, or well after a stream is closed.

Warning: RFC 7540 allows for servers to change the priority of streams. However, h2 does not
allow server stacks to do this. This is because most clients do not adequately know how to respond
when provided conflicting priority information, and relatively little utility is provided by making that
functionality available.

Note: h2 does not maintain any information about the RFC 7540 priority tree. That means that h2 does
not prevent incautious users from creating invalid priority trees, particularly by creating priority loops.
While some basic error checking is provided by h2, users are strongly recommended to understand their
prioritisation strategies before using the priority tools here.

Note: Priority information is strictly advisory. Servers are allowed to disregard it entirely. Avoid relying
on the idea that your priority signaling will definitely be obeyed.

New in version 2.4.0.

Parameters

• stream_id (int) – The ID of the stream to prioritize.

• weight (int) – The weight to give the stream. Defaults to 16, the default weight of any
stream. May be any value between 1 and 256 inclusive. The relative weight of a stream
indicates what proportion of available resources will be allocated to that stream.

• depends_on (int) – The ID of the stream on which this stream depends. This stream
will only be progressed if it is impossible to progress the parent stream (the one on which
this one depends). Passing the value 0 means that this stream does not depend on any
other. Defaults to 0.

• exclusive (bool) – Whether this stream is an exclusive dependency of its “parent”
stream (i.e. the stream given by depends_on). If a stream is an exclusive dependency
of another, that means that all previously-set children of the parent are moved to become
children of the new exclusively-dependent stream. Defaults to False.

push_stream(stream_id, promised_stream_id, request_headers)
Push a response to the client by sending a PUSH_PROMISE frame.

If it is important to send HPACK “never indexed” header fields (as defined in RFC 7451 Sec-
tion 7.1.3), the user may instead provide headers using the HPACK library’s HeaderTuple and
NeverIndexedHeaderTuple objects.

1.7. h2 API 75

https://tools.ietf.org/html/rfc7540#section-5.3
https://tools.ietf.org/html/rfc7541#section-7.1.3
https://tools.ietf.org/html/rfc7541#section-7.1.3
http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple
http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.NeverIndexedHeaderTuple

hyper-h2, Release 4.1.0

Parameters

• stream_id (int) – The ID of the stream that this push is a response to.

• promised_stream_id (int) – The ID of the stream that the pushed response will be
sent on.

• request_headers (An iterable of two tuples of bytestrings or HeaderTuple ob-
jects.) – The headers of the request that the pushed response will be responding to.

Returns Nothing

receive_data(data)
Pass some received HTTP/2 data to the connection for handling.

Parameters data (bytes) – The data received from the remote peer on the network.

Returns A list of events that the remote peer triggered by sending this data.

remote_flow_control_window(stream_id)
Returns the maximum amount of data the remote peer can send on stream stream_id.

This value will never be larger than the total data that can be sent on the connection: even if the given
stream allows more data, the connection window provides a logical maximum to the amount of data that
can be sent.

The maximum data that can be sent in a single data frame on a stream is either this value, or the maximum
frame size, whichever is smaller.

Parameters stream_id (int) – The ID of the stream whose flow control window is being
queried.

Returns The amount of data in bytes that can be received on the stream before the flow control
window is exhausted.

Return type int

reset_stream(stream_id, error_code=0)
Reset a stream.

This method forcibly closes a stream by sending a RST_STREAM frame for a given stream. This is not a
graceful closure. To gracefully end a stream, try the end_stream method.

Parameters

• stream_id (int) – The ID of the stream to reset.

• error_code (int) – (optional) The error code to use to reset the stream. Defaults to
ErrorCodes.NO_ERROR.

Returns Nothing

send_data(stream_id, data, end_stream=False, pad_length=None)
Send data on a given stream.

This method does no breaking up of data: if the data is larger than the value returned by
local_flow_control_window for this stream then a FlowControlError will be raised. If
the data is larger than max_outbound_frame_size then a FrameTooLargeError will be raised.

h2 does this to avoid buffering the data internally. If the user has more data to send than h2 will allow,
consider breaking it up and buffering it externally.

Parameters

• stream_id (int) – The ID of the stream on which to send the data.

76 Chapter 1. Contents

http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple

hyper-h2, Release 4.1.0

• data (bytes) – The data to send on the stream.

• end_stream (bool) – (optional) Whether this is the last data to be sent on the stream.
Defaults to False.

• pad_length (int) – (optional) Length of the padding to apply to the data frame. De-
faults to None for no use of padding. Note that a value of 0 results in padding of length 0
(with the “padding” flag set on the frame).

New in version 2.6.0.

Returns Nothing

send_headers(stream_id, headers, end_stream=False, priority_weight=None, prior-
ity_depends_on=None, priority_exclusive=None)

Send headers on a given stream.

This function can be used to send request or response headers: the kind that are sent depends on whether
this connection has been opened as a client or server connection, and whether the stream was opened by
the remote peer or not.

If this is a client connection, calling send_headers will send the headers as a request. It will also
implicitly open the stream being used. If this is a client connection and send_headers has already
been called, this will send trailers instead.

If this is a server connection, calling send_headers will send the headers as a response. It is a protocol
error for a server to open a stream by sending headers. If this is a server connection and send_headers
has already been called, this will send trailers instead.

When acting as a server, you may call send_headers any number of times allowed by the following
rules, in this order:

• zero or more times with (':status', '1XX') (where 1XX is a placeholder for any 100-level
status code).

• once with any other status header.

• zero or one time for trailers.

That is, you are allowed to send as many informational responses as you like, followed by one complete
response and zero or one HTTP trailer blocks.

Clients may send one or two header blocks: one request block, and optionally one trailer block.

If it is important to send HPACK “never indexed” header fields (as defined in RFC 7451 Sec-
tion 7.1.3), the user may instead provide headers using the HPACK library’s HeaderTuple and
NeverIndexedHeaderTuple objects.

This method also allows users to prioritize the stream immediately, by sending priority information on the
HEADERS frame directly. To do this, any one of priority_weight, priority_depends_on, or
priority_exclusive must be set to a value that is not None. For more information on the priority
fields, see prioritize.

Warning: In HTTP/2, it is mandatory that all the HTTP/2 special headers (that is, ones whose header
keys begin with :) appear at the start of the header block, before any normal headers.

Changed in version 2.3.0: Added support for using HeaderTuple objects to store headers.

Changed in version 2.4.0: Added the ability to provide priority keyword arguments:
priority_weight, priority_depends_on, and priority_exclusive.

Parameters

1.7. h2 API 77

https://tools.ietf.org/html/rfc7541#section-7.1.3
https://tools.ietf.org/html/rfc7541#section-7.1.3
http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple
http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.NeverIndexedHeaderTuple
http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple

hyper-h2, Release 4.1.0

• stream_id (int) – The stream ID to send the headers on. If this stream does not
currently exist, it will be created.

• headers (An iterable of two tuples of bytestrings or HeaderTuple objects.) – The
request/response headers to send.

• end_stream (bool) – Whether this headers frame should end the stream immediately
(that is, whether no more data will be sent after this frame). Defaults to False.

• priority_weight (int or None) – Sets the priority weight of the stream. See
prioritize for more about how this field works. Defaults to None, which means
that no priority information will be sent.

• priority_depends_on (bool or None) – Sets which stream this one depends on
for priority purposes. See prioritize for more about how this field works. Defaults to
None, which means that no priority information will be sent.

• priority_exclusive – Sets whether this stream exclusively depends on the stream
given in priority_depends_on for priority purposes. See prioritize for more
about how this field workds. Defaults to None, which means that no priority information
will be sent.

Returns Nothing

update_settings(new_settings)
Update the local settings. This will prepare and emit the appropriate SETTINGS frame.

Parameters new_settings – A dictionary of {setting: new value}

1.7.3 Configuration

class h2.config.H2Configuration(client_side=True, header_encoding=None,
validate_outbound_headers=True, normal-
ize_outbound_headers=True, split_outbound_cookies=False,
validate_inbound_headers=True, normal-
ize_inbound_headers=True, logger=None)

An object that controls the way a single HTTP/2 connection behaves.

This object allows the users to customize behaviour. In particular, it allows users to enable or disable optional
features, or to otherwise handle various unusual behaviours.

This object has very little behaviour of its own: it mostly just ensures that configuration is self-consistent.

Parameters

• client_side (bool) – Whether this object is to be used on the client side of a connec-
tion, or on the server side. Affects the logic used by the state machine, the default settings
values, the allowable stream IDs, and several other properties. Defaults to True.

• header_encoding (str, False, or None) – Controls whether the headers emitted by
this object in events are transparently decoded to unicode strings, and what encoding is
used to do that decoding. This defaults to None, meaning that headers will be returned as
bytes. To automatically decode headers (that is, to return them as unicode strings), this can
be set to the string name of any encoding, e.g. 'utf-8'.

Changed in version 3.0.0: Changed default value from 'utf-8' to None

• validate_outbound_headers (bool) – Controls whether the headers emitted by
this object are validated against the rules in RFC 7540. Disabling this setting will cause
outbound header validation to be skipped, and allow the object to emit headers that may be
illegal according to RFC 7540. Defaults to True.

78 Chapter 1. Contents

http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple

hyper-h2, Release 4.1.0

• normalize_outbound_headers (bool) – Controls whether the headers emitted by
this object are normalized before sending. Disabling this setting will cause outbound header
normalization to be skipped, and allow the object to emit headers that may be illegal accord-
ing to RFC 7540. Defaults to True.

• split_outbound_cookies (bool) – Controls whether the outbound cookie headers
are split before sending or not. According to RFC 7540 - 8.1.2.5 the outbound header cookie
headers may be split to improve headers compression. Default is False.

• validate_inbound_headers (bool) – Controls whether the headers received by this
object are validated against the rules in RFC 7540. Disabling this setting will cause inbound
header validation to be skipped, and allow the object to receive headers that may be illegal
according to RFC 7540. Defaults to True.

• normalize_inbound_headers (bool) – Controls whether the headers received by
this object are normalized according to the rules of RFC 7540. Disabling this setting may
lead to h2 emitting header blocks that some RFCs forbid, e.g. with multiple cookie fields.

New in version 3.0.0.

• logger (logging.Logger) – A logger that conforms to the requirements for this mod-
ule, those being no I/O and no context switches, which is needed in order to run in asyn-
chronous operation.

New in version 2.6.0.

header_encoding
Controls whether the headers emitted by this object in events are transparently decoded to unicode
strings, and what encoding is used to do that decoding. This defaults to None, meaning that headers will
be returned as bytes. To automatically decode headers (that is, to return them as unicode strings), this can
be set to the string name of any encoding, e.g. 'utf-8'.

1.7.4 Events

class h2.events.RequestReceived
The RequestReceived event is fired whenever request headers are received. This event carries the HTTP headers
for the given request and the stream ID of the new stream.

Changed in version 2.3.0: Changed the type of headers to HeaderTuple. This has no effect on current
users.

Changed in version 2.4.0: Added stream_ended and priority_updated properties.

headers = None
The request headers.

priority_updated = None
If this request also had associated priority information, the associated PriorityUpdated event will be
available here.

New in version 2.4.0.

stream_ended = None
If this request also ended the stream, the associated StreamEnded event will be available here.

New in version 2.4.0.

stream_id = None
The Stream ID for the stream this request was made on.

class h2.events.ResponseReceived

1.7. h2 API 79

http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple

hyper-h2, Release 4.1.0

The ResponseReceived event is fired whenever response headers are received. This event carries the
HTTP headers for the given response and the stream ID of the new stream.

Changed in version 2.3.0: Changed the type of headers to HeaderTuple. This has no effect on
current users.

Changed in version 2.4.0: Added stream_ended and priority_updated properties.

headers = None
The response headers.

priority_updated = None
If this response also had associated priority information, the associated PriorityUpdated event will
be available here.

New in version 2.4.0.

stream_ended = None
If this response also ended the stream, the associated StreamEnded event will be available here.

New in version 2.4.0.

stream_id = None
The Stream ID for the stream this response was made on.

class h2.events.TrailersReceived
The TrailersReceived event is fired whenever trailers are received on a stream. Trailers are a set of headers sent
after the body of the request/response, and are used to provide information that wasn’t known ahead of time
(e.g. content-length). This event carries the HTTP header fields that form the trailers and the stream ID of the
stream on which they were received.

Changed in version 2.3.0: Changed the type of headers to HeaderTuple. This has no effect on current
users.

Changed in version 2.4.0: Added stream_ended and priority_updated properties.

headers = None
The trailers themselves.

priority_updated = None
If the trailers also set associated priority information, the associated PriorityUpdated event will be
available here.

New in version 2.4.0.

stream_ended = None
Trailers always end streams. This property has the associated StreamEnded in it.

New in version 2.4.0.

stream_id = None
The Stream ID for the stream on which these trailers were received.

class h2.events.InformationalResponseReceived
The InformationalResponseReceived event is fired when an informational response (that is, one whose status
code is a 1XX code) is received from the remote peer.

The remote peer may send any number of these, from zero upwards. These responses are most commonly sent
in response to requests that have the expect: 100-continue header field present. Most users can safely
ignore this event unless you are intending to use the expect: 100-continue flow, or are for any reason
expecting a different 1XX status code.

New in version 2.2.0.

80 Chapter 1. Contents

http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple
http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple

hyper-h2, Release 4.1.0

Changed in version 2.3.0: Changed the type of headers to HeaderTuple. This has no effect on current
users.

Changed in version 2.4.0: Added priority_updated property.

headers = None
The headers for this informational response.

priority_updated = None
If this response also had associated priority information, the associated PriorityUpdated event will
be available here.

New in version 2.4.0.

stream_id = None
The Stream ID for the stream this informational response was made on.

class h2.events.DataReceived
The DataReceived event is fired whenever data is received on a stream from the remote peer. The event carries
the data itself, and the stream ID on which the data was received.

Changed in version 2.4.0: Added stream_ended property.

data = None
The data itself.

flow_controlled_length = None
The amount of data received that counts against the flow control window. Note that padding counts against
the flow control window, so when adjusting flow control you should always use this field rather than
len(data).

stream_ended = None
If this data chunk also completed the stream, the associated StreamEnded event will be available here.

New in version 2.4.0.

stream_id = None
The Stream ID for the stream this data was received on.

class h2.events.WindowUpdated
The WindowUpdated event is fired whenever a flow control window changes size. HTTP/2 defines flow control
windows for connections and streams: this event fires for both connections and streams. The event carries the
ID of the stream to which it applies (set to zero if the window update applies to the connection), and the delta in
the window size.

delta = None
The window delta.

stream_id = None
The Stream ID of the stream whose flow control window was changed. May be 0 if the connection window
was changed.

class h2.events.RemoteSettingsChanged
The RemoteSettingsChanged event is fired whenever the remote peer changes its settings. It contains a complete
inventory of changed settings, including their previous values.

In HTTP/2, settings changes need to be acknowledged. h2 automatically acknowledges settings changes for
efficiency. However, it is possible that the caller may not be happy with the changed setting.

When this event is received, the caller should confirm that the new settings are acceptable. If they are not
acceptable, the user should close the connection with the error code PROTOCOL_ERROR.

1.7. h2 API 81

http://python-hyper.org/projects/hpack/en/stable/api.html#hpack.HeaderTuple

hyper-h2, Release 4.1.0

Changed in version 2.0.0: Prior to this version the user needed to acknowledge settings changes. This is no
longer the case: h2 now automatically acknowledges them.

changed_settings = None
A dictionary of setting byte to ChangedSetting, representing the changed settings.

classmethod from_settings(old_settings, new_settings)
Build a RemoteSettingsChanged event from a set of changed settings.

Parameters

• old_settings – A complete collection of old settings, in the form of a dictionary of
{setting: value}.

• new_settings – All the changed settings and their new values, in the form of a dictio-
nary of {setting: value}.

class h2.events.PingReceived
The PingReceived event is fired whenever a PING is received. It contains the ‘opaque data’ of the PING frame.
A ping acknowledgment with the same ‘opaque data’ is automatically emitted after receiving a ping.

New in version 3.1.0.

ping_data = None
The data included on the ping.

class h2.events.PingAckReceived
The PingAckReceived event is fired whenever a PING acknowledgment is received. It contains the ‘opaque
data’ of the PING+ACK frame, allowing the user to correlate PINGs and calculate RTT.

New in version 3.1.0.

Changed in version 4.0.0: Removed deprecated but equivalent PingAcknowledged.

ping_data = None
The data included on the ping.

class h2.events.StreamEnded
The StreamEnded event is fired whenever a stream is ended by a remote party. The stream may not be fully
closed if it has not been closed locally, but no further data or headers should be expected on that stream.

stream_id = None
The Stream ID of the stream that was closed.

class h2.events.StreamReset
The StreamReset event is fired in two situations. The first is when the remote party forcefully resets the stream.
The second is when the remote party has made a protocol error which only affects a single stream. In this case,
h2 will terminate the stream early and return this event.

Changed in version 2.0.0: This event is now fired when h2 automatically resets a stream.

error_code = None
The error code given. Either one of ErrorCodes or int

remote_reset = None
Whether the remote peer sent a RST_STREAM or we did.

stream_id = None
The Stream ID of the stream that was reset.

class h2.events.PushedStreamReceived
The PushedStreamReceived event is fired whenever a pushed stream has been received from a remote peer. The
event carries on it the new stream ID, the ID of the parent stream, and the request headers pushed by the remote
peer.

82 Chapter 1. Contents

hyper-h2, Release 4.1.0

headers = None
The request headers, sent by the remote party in the push.

parent_stream_id = None
The Stream ID of the stream that the push is related to.

pushed_stream_id = None
The Stream ID of the stream created by the push.

class h2.events.SettingsAcknowledged
The SettingsAcknowledged event is fired whenever a settings ACK is received from the remote peer.
The event carries on it the settings that were acknowedged, in the same format as h2.events.
RemoteSettingsChanged.

changed_settings = None
A dictionary of setting byte to ChangedSetting, representing the changed settings.

class h2.events.PriorityUpdated
The PriorityUpdated event is fired whenever a stream sends updated priority information. This can occur when
the stream is opened, or at any time during the stream lifetime.

This event is purely advisory, and does not need to be acted on.

New in version 2.0.0.

depends_on = None
The stream ID this stream now depends on. May be 0.

exclusive = None
Whether the stream exclusively depends on the parent stream. If it does, this stream should inherit the
current children of its new parent.

stream_id = None
The ID of the stream whose priority information is being updated.

weight = None
The new stream weight. May be the same as the original stream weight. An integer between 1 and 256.

class h2.events.ConnectionTerminated
The ConnectionTerminated event is fired when a connection is torn down by the remote peer using a GOAWAY
frame. Once received, no further action may be taken on the connection: a new connection must be established.

additional_data = None
Additional debug data that can be appended to GOAWAY frame.

error_code = None
The error code cited when tearing down the connection. Should be one of ErrorCodes, but may not be
if unknown HTTP/2 extensions are being used.

last_stream_id = None
The stream ID of the last stream the remote peer saw. This can provide an indication of what data, if any,
never reached the remote peer and so can safely be resent.

class h2.events.AlternativeServiceAvailable
The AlternativeServiceAvailable event is fired when the remote peer advertises an RFC 7838 Alternative Service
using an ALTSVC frame.

This event always carries the origin to which the ALTSVC information applies. That origin is either supplied
by the server directly, or inferred by h2 from the :authority pseudo-header field that was sent by the user
when initiating a given stream.

1.7. h2 API 83

https://tools.ietf.org/html/rfc7838

hyper-h2, Release 4.1.0

This event also carries what RFC 7838 calls the “Alternative Service Field Value”, which is formatted like a
HTTP header field and contains the relevant alternative service information. h2 does not parse or in any way
modify that information: the user is required to do that.

This event can only be fired on the client end of a connection.

New in version 2.3.0.

field_value = None
The ALTSVC field value. This contains information about the HTTP alternative service being advertised
by the server. h2 does not parse this field: it is left exactly as sent by the server. The structure of the data
in this field is given by RFC 7838 Section 3.

origin = None
The origin to which the alternative service field value applies. This field is either supplied by the server
directly, or inferred by h2 from the :authority pseudo-header field that was sent by the user when
initiating the stream on which the frame was received.

class h2.events.UnknownFrameReceived
The UnknownFrameReceived event is fired when the remote peer sends a frame that h2 does not understand.
This occurs primarily when the remote peer is employing HTTP/2 extensions that h2 doesn’t know anything
about.

RFC 7540 requires that HTTP/2 implementations ignore these frames. h2 does so. However, this event is fired
to allow implementations to perform special processing on those frames if needed (e.g. if the implementation is
capable of handling the frame itself).

New in version 2.7.0.

frame = None
The hyperframe Frame object that encapsulates the received frame.

1.7.5 Exceptions

class h2.exceptions.H2Error
The base class for all exceptions for the HTTP/2 module.

class h2.exceptions.NoSuchStreamError(stream_id)
Bases: h2.exceptions.ProtocolError

A stream-specific action referenced a stream that does not exist.

Changed in version 2.0.0: Became a subclass of ProtocolError

stream_id = None
The stream ID corresponds to the non-existent stream.

class h2.exceptions.StreamClosedError(stream_id)
Bases: h2.exceptions.NoSuchStreamError

A more specific form of NoSuchStreamError. Indicates that the stream has since been closed, and that all
state relating to that stream has been removed.

stream_id = None
The stream ID corresponds to the nonexistent stream.

class h2.exceptions.RFC1122Error
Bases: h2.exceptions.H2Error

Emitted when users attempt to do something that is literally allowed by the relevant RFC, but is sufficiently
ill-defined that it’s unwise to allow users to actually do it.

84 Chapter 1. Contents

https://tools.ietf.org/html/rfc7838#section-3

hyper-h2, Release 4.1.0

While there is some disagreement about whether or not we should be liberal in what accept, it is a truth univer-
sally acknowledged that we should be conservative in what emit.

New in version 2.4.0.

Protocol Errors

class h2.exceptions.ProtocolError
Bases: h2.exceptions.H2Error

An action was attempted in violation of the HTTP/2 protocol.

error_code = 1
The error code corresponds to this kind of Protocol Error.

class h2.exceptions.FrameTooLargeError
Bases: h2.exceptions.ProtocolError

The frame that we tried to send or that we received was too large.

error_code = 6
The error code corresponds to this kind of Protocol Error.

class h2.exceptions.FrameDataMissingError
Bases: h2.exceptions.ProtocolError

The frame that we received is missing some data.

New in version 2.0.0.

error_code = 6
The error code corresponds to this kind of Protocol Error.

class h2.exceptions.TooManyStreamsError
Bases: h2.exceptions.ProtocolError

An attempt was made to open a stream that would lead to too many concurrent streams.

class h2.exceptions.FlowControlError
Bases: h2.exceptions.ProtocolError

An attempted action violates flow control constraints.

error_code = 3
The error code corresponds to this kind of Protocol Error.

class h2.exceptions.StreamIDTooLowError(stream_id, max_stream_id)
Bases: h2.exceptions.ProtocolError

An attempt was made to open a stream that had an ID that is lower than the highest ID we have seen on this
connection.

max_stream_id = None
The current highest-seen stream ID.

stream_id = None
The ID of the stream that we attempted to open.

class h2.exceptions.InvalidSettingsValueError(msg, error_code)
An attempt was made to set an invalid Settings value.

New in version 2.0.0.

1.7. h2 API 85

hyper-h2, Release 4.1.0

class h2.exceptions.NoAvailableStreamIDError
Bases: h2.exceptions.ProtocolError

There are no available stream IDs left to the connection. All stream IDs have been exhausted.

New in version 2.0.0.

class h2.exceptions.InvalidBodyLengthError(expected, actual)
Bases: h2.exceptions.ProtocolError

The remote peer sent more or less data that the Content-Length header indicated.

New in version 2.0.0.

class h2.exceptions.UnsupportedFrameError
The remote peer sent a frame that is unsupported in this context.

New in version 2.1.0.

Changed in version 4.0.0: Removed deprecated KeyError parent class.

class h2.exceptions.DenialOfServiceError
Bases: h2.exceptions.ProtocolError

Emitted when the remote peer exhibits a behaviour that is likely to be an attempt to perform a Denial of Service
attack on the implementation. This is a form of ProtocolError that carries a different error code, and allows more
easy detection of this kind of behaviour.

New in version 2.5.0.

error_code = 11
The error code corresponds to this kind of ProtocolError

1.7.6 HTTP/2 Error Codes

h2/errors

Global error code registry containing the established HTTP/2 error codes.

The current registry is available at: https://tools.ietf.org/html/rfc7540#section-11.4

class h2.errors.ErrorCodes
All known HTTP/2 error codes.

New in version 2.5.0.

CANCEL = 8
Stream cancelled.

COMPRESSION_ERROR = 9
Compression state not updated.

CONNECT_ERROR = 10
TCP connection error for CONNECT method.

ENHANCE_YOUR_CALM = 11
Processing capacity exceeded.

FLOW_CONTROL_ERROR = 3
Flow-control limits exceeded.

FRAME_SIZE_ERROR = 6
Frame size incorrect.

86 Chapter 1. Contents

https://tools.ietf.org/html/rfc7540#section-11.4

hyper-h2, Release 4.1.0

HTTP_1_1_REQUIRED = 13
Use HTTP/1.1 for the request.

INADEQUATE_SECURITY = 12
Negotiated TLS parameters not acceptable.

INTERNAL_ERROR = 2
Implementation fault.

NO_ERROR = 0
Graceful shutdown.

PROTOCOL_ERROR = 1
Protocol error detected.

REFUSED_STREAM = 7
Stream not processed.

SETTINGS_TIMEOUT = 4
Settings not acknowledged.

STREAM_CLOSED = 5
Frame received for closed stream.

1.7.7 Settings

class h2.settings.SettingCodes
All known HTTP/2 setting codes.

New in version 2.6.0.

ENABLE_CONNECT_PROTOCOL = 8
This setting can be used to enable the connect protocol. To enable on a client set this to 1.

ENABLE_PUSH = 2
This setting can be used to disable server push. To disable server push on a client, set this to 0.

HEADER_TABLE_SIZE = 1
Allows the sender to inform the remote endpoint of the maximum size of the header compression table
used to decode header blocks, in octets.

INITIAL_WINDOW_SIZE = 4
Indicates the sender’s initial window size (in octets) for stream-level flow control.

MAX_CONCURRENT_STREAMS = 3
Indicates the maximum number of concurrent streams that the sender will allow.

MAX_FRAME_SIZE = 5
Indicates the size of the largest frame payload that the sender is willing to receive, in octets.

MAX_HEADER_LIST_SIZE = 6
This advisory setting informs a peer of the maximum size of header list that the sender is prepared to
accept, in octets. The value is based on the uncompressed size of header fields, including the length of the
name and value in octets plus an overhead of 32 octets for each header field.

class h2.settings.Settings(client=True, initial_values=None)
An object that encapsulates HTTP/2 settings state.

HTTP/2 Settings are a complex beast. Each party, remote and local, has its own settings and a view of the other
party’s settings. When a settings frame is emitted by a peer it cannot assume that the new settings values are in
place until the remote peer acknowledges the setting. In principle, multiple settings changes can be “in flight”
at the same time, all with different values.

1.7. h2 API 87

hyper-h2, Release 4.1.0

This object encapsulates this mess. It provides a dict-like interface to settings, which return the current values
of the settings in question. Additionally, it keeps track of the stack of proposed values: each time an acknowl-
edgement is sent/received, it updates the current values with the stack of proposed values. On top of all that,
it validates the values to make sure they’re allowed, and raises InvalidSettingsValueError if they are
not.

Finally, this object understands what the default values of the HTTP/2 settings are, and sets those defaults
appropriately.

Changed in version 2.2.0: Added the initial_values parameter.

Changed in version 2.5.0: Added the max_header_list_size property.

Parameters

• client (bool) – (optional) Whether these settings should be defaulted for a client imple-
mentation or a server implementation. Defaults to True.

• initial_values – (optional) Any initial values the user would like set, rather than RFC
7540’s defaults.

acknowledge()
The settings have been acknowledged, either by the user (remote settings) or by the remote peer (local
settings).

Returns A dict of {setting: ChangedSetting} that were applied.

clear()→ None. Remove all items from D.

enable_connect_protocol
The current value of the ENABLE_CONNECT_PROTOCOL setting.

enable_push
The current value of the ENABLE_PUSH setting.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

header_table_size
The current value of the HEADER_TABLE_SIZE setting.

initial_window_size
The current value of the INITIAL_WINDOW_SIZE setting.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

max_concurrent_streams
The current value of the MAX_CONCURRENT_STREAMS setting.

max_frame_size
The current value of the MAX_FRAME_SIZE setting.

max_header_list_size
The current value of the MAX_HEADER_LIST_SIZE setting. If not set, returns None, which means
unlimited.

New in version 2.5.0.

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

88 Chapter 1. Contents

hyper-h2, Release 4.1.0

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D’s values

class h2.settings.ChangedSetting(setting, original_value, new_value)

new_value = None
The new value after being changed.

original_value = None
The original value before being changed.

setting = None
The setting code given. Either one of SettingCodes or int

Changed in version 2.6.0.

1.8 Testimonials

1.8.1 Glyph Lefkowitz

Frankly, Hyper-h2 is almost SURREAL in how well-factored and decoupled the implementation is from I/O. If li-
braries in the Python ecosystem looked like this generally, Twisted would be a much better platform than it is. (Frankly,
most of Twisted’s _own_ protocol implementations should aspire to such cleanliness.)

(Source)

1.9 Release Process

Because of h2’s place at the bottom of the dependency tree, it is extremely important that the project maintains a
diligent release schedule. This document outlines our process for managing releases.

1.9.1 Versioning

h2 follows semantic versioning of its public API when it comes to numbering releases. The public API of h2 is strictly
limited to the entities listed in the h2 API documentation: anything not mentioned in that document is not considered
part of the public API and is not covered by the versioning guarantees given by semantic versioning.

1.9.2 Maintenance

h2 has the notion of a “release series”, given by a major and minor version number: for example, there is the 2.1
release series. When each minor release is made and a release series is born, a branch is made off the release tag: for
example, for the 2.1 release series, the 2.1.X branch.

All changes merged into the master branch will be evaluated for whether they can be considered ‘bugfixes’ only (that
is, they do not affect the public API). If they can, they will also be cherry-picked back to all active maintenance
branches that require the bugfix. If the bugfix is not necessary, because the branch in question is unaffected by that
bug, the bugfix will not be backported.

1.8. Testimonials 89

https://twistedmatrix.com/pipermail/twisted-python/2015-November/029894.html
http://semver.org/

hyper-h2, Release 4.1.0

1.9.3 Supported Release Series’

The developers of h2 commit to supporting the following release series:

• The most recent, as identified by the first two numbers in the highest version currently released.

• The immediately prior release series.

The only exception to this policy is that no release series earlier than the 2.1 series will be supported. In this context,
“supported” means that they will continue to receive bugfix releases.

For releases other than the ones identified above, no support is guaranteed. The developers may choose to support
such a release series, but they do not promise to.

The exception here is for security vulnerabilities. If a security vulnerability is identified in an out-of-support release
series, the developers will do their best to patch it and issue an emergency release. For more information, see our
security documentation.

1.10 Release Notes

This document contains release notes for Hyper-h2. In addition to the Release History found at the bottom of this
document, this document also includes a high-level prose overview of each major release after 1.0.0.

1.10.1 High Level Notes

3.0.0: 24 March 2017

The Hyper-h2 team and the Hyper project are delighted to announce the release of Hyper-h2 version 3.0.0! Unlike the
really notable 2.0.0 release, this release is proportionally quite small: however, it has the effect of removing a lot of
cruft and complexity that has built up in the codebase over the lifetime of the v2 release series.

This release was motivated primarily by discovering that applications that attempted to use both HTTP/1.1 and HTTP/2
using hyper-h2 would encounter problems with cookies, because hyper-h2 did not join together cookie headers as
required by RFC 7540. Normally adding such behaviour would be a non-breaking change, but we previously had no
flags to prevent normalization of received HTTP headers.

Because it makes no sense for the cookie to be split by default, we needed to add a controlling flag and set it to true.
The breaking nature of this change is very subtle, and it’s possible most users would never notice, but nevertheless it
is a breaking change and we need to treat it as such.

Happily, we can take this opportunity to finalise a bunch of deprecations we’d made over the past year. The v2 release
series was long-lived and successful, having had a series of releases across the past year-and-a-bit, and the Hyper team
are very proud of it. However, it’s time to open a new chapter, and remove the deprecated code.

The past year has been enormously productive for the Hyper team. A total of 30 v2 releases were made, an enormous
amount of work. A good number of people have made their first contribution in this time, more than I can thank
reasonably without taking up an unreasonable amount of space in this document, so instead I invite you to check out
our awesome contributor list.

We’re looking forward to the next chapter in hyper-h2: it’s been a fun ride so far, and we hope even more of you come
along and join in the fun over the next year!

90 Chapter 1. Contents

http://python-hyper.org/en/latest/security.html
http://python-hyper.org/en/latest/security.html
https://github.com/python-hyper/hyper-h2/graphs/contributors

hyper-h2, Release 4.1.0

2.0.0: 25 January 2016

The Hyper-h2 team and the Hyper project are delighted to announce the release of Hyper-h2 version 2.0.0! This is an
enormous release that contains a gigantic collection of new features and fixes, with the goal of making it easier than
ever to use Hyper-h2 to build a compliant HTTP/2 server or client.

An enormous chunk of this work has been focused on tighter enforcement of restrictions in RFC 7540, ensuring that
we correctly police the actions of remote peers, and error appropriately when those peers violate the specification.
Several of these constitute breaking changes, because data that was previously received and handled without obvious
error now raises ProtocolError exceptions and causes the connection to be terminated.

Additionally, the public API was cleaned up and had several helper methods that had been inavertently exposed re-
moved from the public API. The team wants to stress that while Hyper-h2 follows semantic versioning, the guarantees
of semver apply only to the public API as documented in h2 API. Reducing the surface area of these APIs makes it
easier for us to continue to ensure that the guarantees of semver are respected on our public API.

We also attempted to clear up some of the warts that had appeared in the API, and add features that are helpful for
implementing HTTP/2 endpoints. For example, the H2Connection object now exposes a method for generating the
next stream ID that your client or server can use to initiate a connection (get_next_available_stream_id).
We also removed some needless return values that were guaranteed to return empty lists, which were an attempt to
make a forward-looking guarantee that was entirely unneeded.

Altogether, this has been an extremely productive period for Hyper-h2, and a lot of great work has been done by
the community. To that end, we’d also like to extend a great thankyou to those contributors who made their first
contribution to the project between release 1.0.0 and 2.0.0. Many thanks to: Thomas Kriechbaumer, Alex Chan,
Maximilian Hils, and Glyph. For a full historical list of contributors, see contributors.

We’re looking forward to the next few months of Python HTTP/2 work, and hoping that you’ll find lots of excellent
HTTP/2 applications to build with Hyper-h2!

1.11 Release History

1.11.1 4.1.0 (2021-10-05)

Note: The GitHub repository has been renamed to python-hyper/h2, previously was python-hyper/
hyper-h2. The name of the package on PyPI is unchanged!

API Changes (Backward-Compatible)

• Support for Python 3.9 has been added.

• Support for Python 3.10 has been added.

• New example for a Python socket HTTP/2 client.

• New OutputLogger for use with h2.config.logger. This is only provided for convenience and not part of
the stable API.

Bugfixes

• Header validation now rejects empty header names with a ProtocolError. While hpack decodes such header
blocks without issues, they violate the HTTP semantics.

• Fix TE header name in error message.

1.11. Release History 91

https://github.com/Kriechi
https://github.com/alexwlchan
https://github.com/mhils
https://github.com/glyph
https://github.com/python-hyper/hyper-h2/blob/b14817b79c7bb1661e1aa84ef7920c009ef1e75b/CONTRIBUTORS.rst

hyper-h2, Release 4.1.0

1.11.2 4.0.0 (2020-09-19)

API Changes (Backward-Incompatible)

• Support for Python 2.7 has been removed.

• Support for Python 3.4 has been removed.

• Support for Python 3.5 has been removed.

• Support for PyPy (Python 2.7 compatible) has been removed.

• Support for Python 3.8 has been added.

• Receiving DATA before HEADERS now raises a ProtocolError (see https://tools.ietf.org/html/rfc7540#
section-8.1)

1.11.3 3.2.0 (2020-02-08)

Bugfixes

• Receiving DATA frames on closed (or reset) streams now properly emit a WINDOW_UPDATE to keep the
connection flow window topped up.

API Changes (Backward-Incompatible)

• h2.config.logger now uses a trace(. . .) function, in addition to debug(. . .). If you defined a custom
logger object, you need to handle these new function calls.

1.11.4 3.1.1 (2019-08-02)

Bugfixes

• Ignore WINDOW_UPDATE and RST_STREAM frames received after stream closure.

1.11.5 3.1.0 (2019-01-22)

API Changes (Backward-Incompatible)

• h2.connection.H2Connection.data_to_send first and only argument amt was renamed to
amount.

• Support for Python 3.3 has been removed.

API Changes (Backward-Compatible)

• h2.connection.H2Connection.send_data now supports data parameter being a memoryview
object.

• Refactor ping-related events: a h2.events.PingReceived event is fired when a PING frame is received
and a h2.events.PingAckReceived event is fired when a PING frame with an ACK flag is received. h2.
events.PingAcknowledged is deprecated in favour of the identical h2.events.PingAckReceived.

92 Chapter 1. Contents

https://tools.ietf.org/html/rfc7540#section-8.1
https://tools.ietf.org/html/rfc7540#section-8.1

hyper-h2, Release 4.1.0

• Added ENABLE_CONNECT_PROTOCOL to h2.settings.SettingCodes.

• Support CONNECT requests with a :protocol pseudo header thereby supporting RFC 8441.

• A limit to the number of closed streams kept in memory by the connection is applied. It can be configured by
h2.connection.H2Connection.MAX_CLOSED_STREAMS.

Bugfixes

• Debug logging when stream_id is None is now fixed and no longer errors.

1.11.6 3.0.1 (2017-04-03)

Bugfixes

• CONTINUATION frames sent on closed streams previously caused stream errors of type STREAM_CLOSED.
RFC 7540 § 6.10 requires that these be connection errors of type PROTOCOL_ERROR, and so this release
changes to match that behaviour.

• Remote peers incrementing their inbound connection window beyond the maximum allowed value now cause
stream-level errors, rather than connection-level errors, allowing connections to stay up longer.

• h2 now rejects receiving and sending request header blocks that are missing any of the mandatory pseudo-header
fields (:path, :scheme, and :method).

• h2 now rejects receiving and sending request header blocks that have an empty :path pseudo-header value.

• h2 now rejects receiving and sending request header blocks that contain response-only pseudo-headers, and vice
versa.

• h2 now correct respects user-initiated changes to the HEADER_TABLE_SIZE local setting, and ensures that if
users shrink or increase the header table size it is policed appropriately.

1.11.7 2.6.2 (2017-04-03)

Bugfixes

• CONTINUATION frames sent on closed streams previously caused stream errors of type STREAM_CLOSED.
RFC 7540 § 6.10 requires that these be connection errors of type PROTOCOL_ERROR, and so this release
changes to match that behaviour.

• Remote peers incrementing their inbound connection window beyond the maximum allowed value now cause
stream-level errors, rather than connection-level errors, allowing connections to stay up longer.

• h2 now rejects receiving and sending request header blocks that are missing any of the mandatory pseudo-header
fields (:path, :scheme, and :method).

• h2 now rejects receiving and sending request header blocks that have an empty :path pseudo-header value.

• h2 now rejects receiving and sending request header blocks that contain response-only pseudo-headers, and vice
versa.

• h2 now correct respects user-initiated changes to the HEADER_TABLE_SIZE local setting, and ensures that if
users shrink or increase the header table size it is policed appropriately.

1.11. Release History 93

hyper-h2, Release 4.1.0

1.11.8 2.5.4 (2017-04-03)

Bugfixes

• CONTINUATION frames sent on closed streams previously caused stream errors of type STREAM_CLOSED.
RFC 7540 § 6.10 requires that these be connection errors of type PROTOCOL_ERROR, and so this release
changes to match that behaviour.

• Remote peers incrementing their inbound connection window beyond the maximum allowed value now cause
stream-level errors, rather than connection-level errors, allowing connections to stay up longer.

• h2 now correct respects user-initiated changes to the HEADER_TABLE_SIZE local setting, and ensures that if
users shrink or increase the header table size it is policed appropriately.

1.11.9 3.0.0 (2017-03-24)

API Changes (Backward-Incompatible)

• By default, hyper-h2 now joins together received cookie header fields, per RFC 7540 Section 8.1.2.5.

• Added a normalize_inbound_headers flag to the H2Configuration object that defaults to True.
Setting this to False changes the behaviour from the previous point back to the v2 behaviour.

• Removed deprecated fields from h2.errors module.

• Removed deprecated fields from h2.settings module.

• Removed deprecated client_side and header_encoding arguments from H2Connection.

• Removed deprecated client_side and header_encoding properties from H2Connection.

• dict objects are no longer allowed for user-supplied headers.

• The default header encoding is now None, not utf-8: this means that all events that carry headers now return
those headers as byte strings by default. The header encoding can be set back to utf-8 to restore the old
behaviour.

API Changes (Backward-Compatible)

• Added new UnknownFrameReceived event that fires when unknown extension frames have been received.
This only fires when using hyperframe 5.0 or later: earlier versions of hyperframe cause us to silently ignore
extension frames.

Bugfixes

None

1.11.10 2.6.1 (2017-03-16)

Bugfixes

• Allowed hyperframe v5 support while continuing to ignore unexpected frames.

94 Chapter 1. Contents

hyper-h2, Release 4.1.0

1.11.11 2.5.3 (2017-03-16)

Bugfixes

• Allowed hyperframe v5 support while continuing to ignore unexpected frames.

1.11.12 2.4.4 (2017-03-16)

Bugfixes

• Allowed hyperframe v5 support while continuing to ignore unexpected frames.

1.11.13 2.6.0 (2017-02-28)

API Changes (Backward-Compatible)

• Added a new h2.events.Event class that acts as a base class for all events.

• Rather than reject outbound Connection-specific headers, h2 will now normalize the header block by removing
them.

• Implement equality for the h2.settings.Settings class.

• Added h2.settings.SettingCodes, an enum that is used to store all the HTTP/2 setting codes. This
allows us to use a better printed representation of the setting code in most places that it is used.

• The setting field in ChangedSetting for the RemoteSettingsChanged and
SettingsAcknowledged events has been updated to be instances of SettingCodes whenever
they correspond to a known setting code. When they are an unknown setting code, they are instead int. As
SettingCodes is a subclass of int, this is non-breaking.

• Deprecated the other fields in h2.settings. These will be removed in 3.0.0.

• Added an optional pad_length parameter to H2Connection.send_data to allow the user to include
padding on a data frame.

• Added a new parameter to the h2.config.H2Configuration initializer which takes a logger. This allows
us to log by providing a logger that conforms to the requirements of this module so that it can be used in different
environments.

Bugfixes

• Correctly reject pushed request header blocks whenever they have malformed request header blocks.

• Correctly normalize pushed request header blocks whenever they have normalizable header fields.

• Remote peers are now allowed to send zero or any positive number as a value for
SETTINGS_MAX_HEADER_LIST_SIZE, where previously sending zero would raise a
InvalidSettingsValueError.

• Resolved issue where the HTTP2-Settings header value for plaintext upgrade that was emitted by
initiate_upgrade_connection included the entire SETTINGS frame, instead of just the payload.

• Resolved issue where the HTTP2-Settings header value sent by a client for plaintext upgrade would be
ignored by initiate_upgrade_connection, rather than have those settings applied appropriately.

1.11. Release History 95

hyper-h2, Release 4.1.0

• Resolved an issue whereby certain frames received from a peer in the CLOSED state would trigger connection
errors when RFC 7540 says they should have triggered stream errors instead. Added more detailed stream
closure tracking to ensure we don’t throw away connections unnecessarily.

1.11.14 2.5.2 (2017-01-27)

• Resolved issue where the HTTP2-Settings header value for plaintext upgrade that was emitted by
initiate_upgrade_connection included the entire SETTINGS frame, instead of just the payload.

• Resolved issue where the HTTP2-Settings header value sent by a client for plaintext upgrade would be
ignored by initiate_upgrade_connection, rather than have those settings applied appropriately.

1.11.15 2.4.3 (2017-01-27)

• Resolved issue where the HTTP2-Settings header value for plaintext upgrade that was emitted by
initiate_upgrade_connection included the entire SETTINGS frame, instead of just the payload.

• Resolved issue where the HTTP2-Settings header value sent by a client for plaintext upgrade would be
ignored by initiate_upgrade_connection, rather than have those settings applied appropriately.

1.11.16 2.3.4 (2017-01-27)

• Resolved issue where the HTTP2-Settings header value for plaintext upgrade that was emitted by
initiate_upgrade_connection included the entire SETTINGS frame, instead of just the payload.

• Resolved issue where the HTTP2-Settings header value sent by a client for plaintext upgrade would be
ignored by initiate_upgrade_connection, rather than have those settings applied appropriately.

1.11.17 2.5.1 (2016-12-17)

Bugfixes

• Remote peers are now allowed to send zero or any positive number as a value for
SETTINGS_MAX_HEADER_LIST_SIZE, where previously sending zero would raise a
InvalidSettingsValueError.

1.11.18 2.5.0 (2016-10-25)

API Changes (Backward-Compatible)

• Added a new H2Configuration object that allows rich configuration of a H2Connection. This object
supersedes the prior keyword arguments to the H2Connection object, which are now deprecated and will be
removed in 3.0.

• Added support for automated window management via the acknowledge_received_data method. See
the documentation for more details.

• Added a DenialOfServiceError that is raised whenever a behaviour that looks like a DoS attempt is
encountered: for example, an overly large decompressed header list. This is a subclass of ProtocolError.

• Added support for setting and managing SETTINGS_MAX_HEADER_LIST_SIZE. This setting is now de-
faulted to 64kB.

96 Chapter 1. Contents

hyper-h2, Release 4.1.0

• Added h2.errors.ErrorCodes, an enum that is used to store all the HTTP/2 error codes. This allows us
to use a better printed representation of the error code in most places that it is used.

• The error_code fields on ConnectionTerminated and StreamReset events have been updated to
be instances of ErrorCodes whenever they correspond to a known error code. When they are an unknown
error code, they are instead int. As ErrorCodes is a subclass of int, this is non-breaking.

• Deprecated the other fields in h2.errors. These will be removed in 3.0.0.

Bugfixes

• Correctly reject request header blocks with neither :authority nor Host headers, or header blocks which contain
mismatched :authority and Host headers, per RFC 7540 Section 8.1.2.3.

• Correctly expect that responses to HEAD requests will have no body regardless of the value of the Content-
Length header, and reject those that do.

• Correctly refuse to send header blocks that contain neither :authority nor Host headers, or header blocks which
contain mismatched :authority and Host headers, per RFC 7540 Section 8.1.2.3.

• Hyper-h2 will now reject header field names and values that contain leading or trailing whitespace.

• Correctly strip leading/trailing whitespace from header field names and values.

• Correctly refuse to send header blocks with a TE header whose value is not trailers, per RFC 7540 Section
8.1.2.2.

• Correctly refuse to send header blocks with connection-specific headers, per RFC 7540 Section 8.1.2.2.

• Correctly refuse to send header blocks that contain duplicate pseudo-header fields, or with pseudo-header fields
that appear after ordinary header fields, per RFC 7540 Section 8.1.2.1.

This may cause passing a dictionary as the header block to send_headers to throw a ProtocolError,
because dictionaries are unordered and so they may trip this check. Passing dictionaries here is deprecated, and
callers should change to using a sequence of 2-tuples as their header blocks.

• Correctly reject trailers that contain HTTP/2 pseudo-header fields, per RFC 7540 Section 8.1.2.1.

• Correctly refuse to send trailers that contain HTTP/2 pseudo-header fields, per RFC 7540 Section 8.1.2.1.

• Correctly reject responses that do not contain the :status header field, per RFC 7540 Section 8.1.2.4.

• Correctly refuse to send responses that do not contain the :status header field, per RFC 7540 Section 8.1.2.4.

• Correctly update the maximum frame size when the user updates the value of that setting. Prior to this release,
if the user updated the maximum frame size hyper-h2 would ignore the update, preventing the remote peer from
using the higher frame sizes.

1.11.19 2.4.2 (2016-10-25)

Bugfixes

• Correctly update the maximum frame size when the user updates the value of that setting. Prior to this release,
if the user updated the maximum frame size hyper-h2 would ignore the update, preventing the remote peer from
using the higher frame sizes.

1.11. Release History 97

hyper-h2, Release 4.1.0

1.11.20 2.3.3 (2016-10-25)

Bugfixes

• Correctly update the maximum frame size when the user updates the value of that setting. Prior to this release,
if the user updated the maximum frame size hyper-h2 would ignore the update, preventing the remote peer from
using the higher frame sizes.

1.11.21 2.2.7 (2016-10-25)

Final 2.2.X release

Bugfixes

• Correctly update the maximum frame size when the user updates the value of that setting. Prior to this release,
if the user updated the maximum frame size hyper-h2 would ignore the update, preventing the remote peer from
using the higher frame sizes.

1.11.22 2.4.1 (2016-08-23)

Bugfixes

• Correctly expect that responses to HEAD requests will have no body regardless of the value of the Content-
Length header, and reject those that do.

1.11.23 2.3.2 (2016-08-23)

Bugfixes

• Correctly expect that responses to HEAD requests will have no body regardless of the value of the Content-
Length header, and reject those that do.

1.11.24 2.4.0 (2016-07-01)

API Changes (Backward-Compatible)

• Adds additional_data to H2Connection.close_connection, allowing the user to send additional
debug data on the GOAWAY frame.

• Adds last_stream_id to H2Connection.close_connection, allowing the user to manually control
what the reported last stream ID is.

• Add new method: prioritize.

• Add support for emitting stream priority information when sending headers frames using three new keyword
arguments: priority_weight, priority_depends_on, and priority_exclusive.

• Add support for “related events”: events that fire simultaneously on a single frame.

98 Chapter 1. Contents

hyper-h2, Release 4.1.0

1.11.25 2.3.1 (2016-05-12)

Bugfixes

• Resolved AttributeError encountered when receiving more than one sequence of CONTINUATION
frames on a given connection.

1.11.26 2.2.5 (2016-05-12)

Bugfixes

• Resolved AttributeError encountered when receiving more than one sequence of CONTINUATION
frames on a given connection.

1.11.27 2.3.0 (2016-04-26)

API Changes (Backward-Compatible)

• Added a new flag to the H2Connection constructor: header_encoding, that controls what encoding is
used (if any) to decode the headers from bytes to unicode. This defaults to UTF-8 for backward compatibility.
To disable the decode and use bytes exclusively, set the field to False, None, or the empty string. This affects all
headers, including those pushed by servers.

• Bumped the minimum version of HPACK allowed from 2.0 to 2.2.

• Added support for advertising RFC 7838 Alternative services.

• Allowed users to provide hpack.HeaderTuple and hpack.NeverIndexedHeaderTuple objects to
all methods that send headers.

• Changed all events that carry headers to emit hpack.HeaderTuple and hpack.
NeverIndexedHeaderTuple instead of plain tuples. This allows users to maintain header indexing
state.

• Added support for plaintext upgrade with the initiate_upgrade_connection method.

Bugfixes

• Automatically ensure that all Authorization and Proxy-Authorization headers, as well as short
Cookie headers, are prevented from being added to encoding contexts.

1.11.28 2.2.4 (2016-04-25)

Bugfixes

• Correctly forbid pseudo-headers that were not defined in RFC 7540.

• Ignore AltSvc frames, rather than exploding when receiving them.

1.11.29 2.1.5 (2016-04-25)

Final 2.1.X release

1.11. Release History 99

hyper-h2, Release 4.1.0

Bugfixes

• Correctly forbid pseudo-headers that were not defined in RFC 7540.

• Ignore AltSvc frames, rather than exploding when receiving them.

1.11.30 2.2.3 (2016-04-13)

Bugfixes

• Allowed the 4.X series of hyperframe releases as dependencies.

1.11.31 2.1.4 (2016-04-13)

Bugfixes

• Allowed the 4.X series of hyperframe releases as dependencies.

1.11.32 2.2.2 (2016-04-05)

Bugfixes

• Fixed issue where informational responses were erroneously not allowed to be sent in the
HALF_CLOSED_REMOTE state.

• Fixed issue where informational responses were erroneously not allowed to be received in the
HALF_CLOSED_LOCAL state.

• Fixed issue where we allowed information responses to be sent or received after final responses.

1.11.33 2.2.1 (2016-03-23)

Bugfixes

• Fixed issue where users using locales that did not default to UTF-8 were unable to install source distributions of
the package.

1.11.34 2.2.0 (2016-03-23)

API Changes (Backward-Compatible)

• Added support for sending informational responses (responses with 1XX status) codes as part of the standard
flow. HTTP/2 allows zero or more informational responses with no upper limit: hyper-h2 does too.

• Added support for receiving informational responses (responses with 1XX status) codes as part of the standard
flow. HTTP/2 allows zero or more informational responses with no upper limit: hyper-h2 does too.

• Added a new event: ReceivedInformationalResponse. This response is fired when informational
responses (those with 1XX status codes).

• Added an additional_data field to the ConnectionTerminated event that carries any additional data
sent on the GOAWAY frame. May be None if no such data was sent.

100 Chapter 1. Contents

hyper-h2, Release 4.1.0

• Added the initial_values optional argument to the Settings object.

Bugfixes

• Correctly reject all of the connection-specific headers mentioned in RFC 7540 § 8.1.2.2, not just the
Connection: header.

• Defaulted the value of SETTINGS_MAX_CONCURRENT_STREAMS to 100, unless explicitly overridden. This
is a safe defensive initial value for this setting.

1.11.35 2.1.3 (2016-03-16)

Deprecations

• Passing dictionaries to send_headers as the header block is deprecated, and will be removed in 3.0.

1.11.36 2.1.2 (2016-02-17)

Bugfixes

• Reject attempts to push streams on streams that were themselves pushed: streams can only be pushed on streams
that were initiated by the client.

• Correctly allow CONTINUATION frames to extend the header block started by a PUSH_PROMISE frame.

• Changed our handling of frames received on streams that were reset by the user.

Previously these would, at best, cause ProtocolErrors to be raised and the connection to be torn down (rather
defeating the point of resetting streams at all) and, at worst, would cause subtle inconsistencies in state between
hyper-h2 and the remote peer that could lead to header block decoding errors or flow control blockages.

Now when the user resets a stream all further frames received on that stream are ignored except where they
affect some form of connection-level state, where they have their effect and are then ignored.

• Fixed a bug whereby receiving a PUSH_PROMISE frame on a stream that was closed would cause a
RST_STREAM frame to be emitted on the closed-stream, but not the newly-pushed one. Now this causes a
ProtocolError.

1.11.37 2.1.1 (2016-02-05)

Bugfixes

• Added debug representations for all events.

• Fixed problems with setup.py that caused trouble on older setuptools/pip installs.

1.11.38 2.1.0 (2016-02-02)

API Changes (Backward-Compatible)

• Added new field to DataReceived: flow_controlled_length. This is the length of the frame includ-
ing padded data, allowing users to correctly track changes to the flow control window.

1.11. Release History 101

hyper-h2, Release 4.1.0

• Defined new UnsupportedFrameError, thrown when frames that are known to hyperframe but not sup-
ported by hyper-h2 are received. For backward-compatibility reasons, this is a ProtocolError and a
KeyError.

Bugfixes

• Hyper-h2 now correctly accounts for padding when maintaining flow control windows.

• Resolved a bug where hyper-h2 would mistakenly apply SETTINGS_INITIAL_WINDOW_SIZE to the con-
nection flow control window in addition to the stream-level flow control windows.

• Invalid Content-Length headers now throw ProtocolError exceptions and correctly tear the connection
down, instead of leaving the connection in an indeterminate state.

• Invalid header blocks now throw ProtocolError, rather than a grab bag of possible other exceptions.

1.11.39 2.0.0 (2016-01-25)

API Changes (Breaking)

• Attempts to open streams with invalid stream IDs, either by the remote peer or by the user, are now rejected as
a ProtocolError. Previously these were allowed, and would cause remote peers to error.

• Receiving frames that have invalid padding now causes the connection to be terminated with a
ProtocolError being raised. Previously these passed undetected.

• Settings values set by both the user and the remote peer are now validated when they’re set. If they’re invalid, a
new InvalidSettingsValueError is raised and, if set by the remote peer, a connection error is signaled.
Previously, it was possible to set invalid values. These would either be caught when building frames, or would
be allowed to stand.

• Settings changes no longer require user action to be acknowledged: hyper-h2 acknowledges them au-
tomatically. This moves the location where some exceptions may be thrown, and also causes the
acknowledge_settings method to be removed from the public API.

• Removed a number of methods on the H2Connection object from the public, semantically versioned API, by
renaming them to have leading underscores. Specifically, removed:

– get_stream_by_id

– get_or_create_stream

– begin_new_stream

– receive_frame

– acknowledge_settings

• Added full support for receiving CONTINUATION frames, including policing logic about when and how they
are received. Previously, receiving CONTINUATION frames was not supported and would throw exceptions.

• All public API functions on H2Connection except for receive_data no longer return lists of events,
because these lists were always empty. Events are now only raised by receive_data.

• Calls to increment_flow_control_window with out of range values now raise ValueError excep-
tions. Previously they would be allowed, or would cause errors when serializing frames.

102 Chapter 1. Contents

hyper-h2, Release 4.1.0

API Changes (Backward-Compatible)

• Added PriorityUpdated event for signaling priority changes.

• Added get_next_available_stream_id function.

• Receiving DATA frames on streams not in the OPEN or HALF_CLOSED_LOCAL states now causes a stream
reset, rather than a connection reset. The error is now also classified as a StreamClosedError, rather than
a more generic ProtocolError.

• Receiving HEADERS or PUSH_PROMISE frames in the HALF_CLOSED_REMOTE state now causes a
stream reset, rather than a connection reset.

• Receiving frames that violate the max frame size now causes connection errors with error code
FRAME_SIZE_ERROR, not a generic PROTOCOL_ERROR. This condition now also raises a
FrameTooLargeError, a new subclass of ProtocolError.

• Made NoSuchStreamError a subclass of ProtocolError.

• The StreamReset event is now also fired whenever a protocol error from the remote peer forces a stream to
close early. This is only fired once.

• The StreamReset event now carries a flag, remote_reset, that is set to True in all cases where
StreamReset would previously have fired (e.g. when the remote peer sent a RST_STREAM), and is set
to False when it fires because the remote peer made a protocol error.

• Hyper-h2 now rejects attempts by peers to increment a flow control window by zero bytes.

• Hyper-h2 now rejects peers sending header blocks that are ill-formed for a number of reasons as set out in RFC
7540 Section 8.1.2.

• Attempting to send non-PRIORITY frames on closed streams now raises StreamClosedError.

• Remote peers attempting to increase the flow control window beyond 2**31 - 1, either by window increment
or by settings frame, are now rejected as ProtocolError.

• Local attempts to increase the flow control window beyond 2**31 - 1 by window increment are now rejected
as ProtocolError.

• The bytes that represent individual settings are now available in h2.settings, instead of needing users to
import them from hyperframe.

Bugfixes

• RFC 7540 requires that a separate minimum stream ID be used for inbound and outbound streams. Hyper-h2
now obeys this requirement.

• Hyper-h2 now does a better job of reporting the last stream ID it has partially handled when terminating con-
nections.

• Fixed an error in the arguments of StreamIDTooLowError.

• Prevent ValueError leaking from Hyperframe.

• Prevent struct.error and InvalidFrameError leaking from Hyperframe.

1.11.40 1.1.1 (2015-11-17)

1.11. Release History 103

hyper-h2, Release 4.1.0

Bugfixes

• Forcibly lowercase all header names to improve compatibility with implementations that demand lower-case
header names.

1.11.41 1.1.0 (2015-10-28)

API Changes (Backward-Compatible)

• Added a new ConnectionTerminated event, which fires when GOAWAY frames are received.

• Added a subclass of NoSuchStreamError, called StreamClosedError, that fires when actions are taken
on a stream that is closed and has had its state flushed from the system.

• Added StreamIDTooLowError, raised when the user or the remote peer attempts to create a stream with
an ID lower than one previously used in the dialog. Inherits from ValueError for backward-compatibility
reasons.

Bugfixes

• Do not throw ProtocolError when attempting to send multiple GOAWAY frames on one connection.

• We no longer forcefully change the decoder table size when settings changes are ACKed, instead waiting for
remote acknowledgement of the change.

• Improve the performance of checking whether a stream is open.

• We now attempt to lazily garbage collect closed streams, to avoid having the state hang around indefinitely,
leaking memory.

• Avoid further per-stream allocations, leading to substantial performance improvements when many short-lived
streams are used.

1.11.42 1.0.0 (2015-10-15)

• First production release!

104 Chapter 1. Contents

Python Module Index

h
h2.errors, 86

105

hyper-h2, Release 4.1.0

106 Python Module Index

Index

A
acknowledge() (h2.settings.Settings method), 88
acknowledge_received_data()

(h2.connection.H2Connection method), 71
additional_data (h2.events.ConnectionTerminated

attribute), 83
advertise_alternative_service()

(h2.connection.H2Connection method), 71
AlternativeServiceAvailable (class in

h2.events), 83

C
CANCEL (h2.errors.ErrorCodes attribute), 86
changed_settings (h2.events.RemoteSettingsChanged

attribute), 82
changed_settings (h2.events.SettingsAcknowledged

attribute), 83
ChangedSetting (class in h2.settings), 89
clear() (h2.settings.Settings method), 88
clear_outbound_data_buffer()

(h2.connection.H2Connection method), 72
close_connection()

(h2.connection.H2Connection method), 72
COMPRESSION_ERROR (h2.errors.ErrorCodes at-

tribute), 86
config (h2.connection.H2Connection attribute), 72
CONNECT_ERROR (h2.errors.ErrorCodes attribute), 86
ConnectionTerminated (class in h2.events), 83

D
data (h2.events.DataReceived attribute), 81
data_to_send() (h2.connection.H2Connection

method), 73
DataReceived (class in h2.events), 81
delta (h2.events.WindowUpdated attribute), 81
DenialOfServiceError (class in h2.exceptions), 86
depends_on (h2.events.PriorityUpdated attribute), 83

E
ENABLE_CONNECT_PROTOCOL

(h2.settings.SettingCodes attribute), 87
enable_connect_protocol (h2.settings.Settings

attribute), 88
ENABLE_PUSH (h2.settings.SettingCodes attribute), 87
enable_push (h2.settings.Settings attribute), 88
end_stream() (h2.connection.H2Connection

method), 73
ENHANCE_YOUR_CALM (h2.errors.ErrorCodes at-

tribute), 86
error_code (h2.events.ConnectionTerminated at-

tribute), 83
error_code (h2.events.StreamReset attribute), 82
error_code (h2.exceptions.DenialOfServiceError at-

tribute), 86
error_code (h2.exceptions.FlowControlError at-

tribute), 85
error_code (h2.exceptions.FrameDataMissingError

attribute), 85
error_code (h2.exceptions.FrameTooLargeError at-

tribute), 85
error_code (h2.exceptions.ProtocolError attribute),

85
ErrorCodes (class in h2.errors), 86
exclusive (h2.events.PriorityUpdated attribute), 83

F
field_value (h2.events.AlternativeServiceAvailable

attribute), 84
FLOW_CONTROL_ERROR (h2.errors.ErrorCodes at-

tribute), 86
flow_controlled_length

(h2.events.DataReceived attribute), 81
FlowControlError (class in h2.exceptions), 85
frame (h2.events.UnknownFrameReceived attribute), 84
FRAME_SIZE_ERROR (h2.errors.ErrorCodes at-

tribute), 86
FrameDataMissingError (class in h2.exceptions),

85
FrameTooLargeError (class in h2.exceptions), 85

107

hyper-h2, Release 4.1.0

from_settings() (h2.events.RemoteSettingsChanged
class method), 82

G
get() (h2.settings.Settings method), 88
get_next_available_stream_id()

(h2.connection.H2Connection method), 73

H
h2.errors (module), 86
H2Configuration (class in h2.config), 78
H2Connection (class in h2.connection), 71
H2Error (class in h2.exceptions), 84
header_encoding (h2.config.H2Configuration at-

tribute), 79
HEADER_TABLE_SIZE (h2.settings.SettingCodes at-

tribute), 87
header_table_size (h2.settings.Settings attribute),

88
headers (h2.events.InformationalResponseReceived at-

tribute), 81
headers (h2.events.PushedStreamReceived attribute),

82
headers (h2.events.RequestReceived attribute), 79
headers (h2.events.ResponseReceived attribute), 80
headers (h2.events.TrailersReceived attribute), 80
HTTP_1_1_REQUIRED (h2.errors.ErrorCodes at-

tribute), 86

I
INADEQUATE_SECURITY (h2.errors.ErrorCodes at-

tribute), 87
increment_flow_control_window()

(h2.connection.H2Connection method), 73
InformationalResponseReceived (class in

h2.events), 80
INITIAL_WINDOW_SIZE (h2.settings.SettingCodes

attribute), 87
initial_window_size (h2.settings.Settings at-

tribute), 88
initiate_connection()

(h2.connection.H2Connection method), 74
initiate_upgrade_connection()

(h2.connection.H2Connection method), 74
INTERNAL_ERROR (h2.errors.ErrorCodes attribute),

87
InvalidBodyLengthError (class in h2.exceptions),

86
InvalidSettingsValueError (class in

h2.exceptions), 85
items() (h2.settings.Settings method), 88

K
keys() (h2.settings.Settings method), 88

L
last_stream_id (h2.events.ConnectionTerminated

attribute), 83
local_flow_control_window()

(h2.connection.H2Connection method), 74

M
MAX_CONCURRENT_STREAMS

(h2.settings.SettingCodes attribute), 87
max_concurrent_streams (h2.settings.Settings at-

tribute), 88
MAX_FRAME_SIZE (h2.settings.SettingCodes attribute),

87
max_frame_size (h2.settings.Settings attribute), 88
MAX_HEADER_LIST_SIZE (h2.settings.SettingCodes

attribute), 87
max_header_list_size (h2.settings.Settings

attribute), 88
max_inbound_frame_size

(h2.connection.H2Connection attribute),
74

max_outbound_frame_size
(h2.connection.H2Connection attribute),
74

max_stream_id (h2.exceptions.StreamIDTooLowError
attribute), 85

N
new_value (h2.settings.ChangedSetting attribute), 89
NO_ERROR (h2.errors.ErrorCodes attribute), 87
NoAvailableStreamIDError (class in

h2.exceptions), 85
NoSuchStreamError (class in h2.exceptions), 84

O
open_inbound_streams

(h2.connection.H2Connection attribute),
74

open_outbound_streams
(h2.connection.H2Connection attribute),
74

origin (h2.events.AlternativeServiceAvailable at-
tribute), 84

original_value (h2.settings.ChangedSetting at-
tribute), 89

P
parent_stream_id (h2.events.PushedStreamReceived

attribute), 83
ping() (h2.connection.H2Connection method), 74
ping_data (h2.events.PingAckReceived attribute), 82
ping_data (h2.events.PingReceived attribute), 82
PingAckReceived (class in h2.events), 82

108 Index

hyper-h2, Release 4.1.0

PingReceived (class in h2.events), 82
pop() (h2.settings.Settings method), 88
popitem() (h2.settings.Settings method), 88
prioritize() (h2.connection.H2Connection

method), 75
priority_updated (h2.events.InformationalResponseReceived

attribute), 81
priority_updated (h2.events.RequestReceived at-

tribute), 79
priority_updated (h2.events.ResponseReceived at-

tribute), 80
priority_updated (h2.events.TrailersReceived at-

tribute), 80
PriorityUpdated (class in h2.events), 83
PROTOCOL_ERROR (h2.errors.ErrorCodes attribute),

87
ProtocolError (class in h2.exceptions), 85
push_stream() (h2.connection.H2Connection

method), 75
pushed_stream_id (h2.events.PushedStreamReceived

attribute), 83
PushedStreamReceived (class in h2.events), 82

R
receive_data() (h2.connection.H2Connection

method), 76
REFUSED_STREAM (h2.errors.ErrorCodes attribute),

87
remote_flow_control_window()

(h2.connection.H2Connection method), 76
remote_reset (h2.events.StreamReset attribute), 82
RemoteSettingsChanged (class in h2.events), 81
RequestReceived (class in h2.events), 79
reset_stream() (h2.connection.H2Connection

method), 76
ResponseReceived (class in h2.events), 79
RFC1122Error (class in h2.exceptions), 84

S
send_data() (h2.connection.H2Connection method),

76
send_headers() (h2.connection.H2Connection

method), 77
setdefault() (h2.settings.Settings method), 88
setting (h2.settings.ChangedSetting attribute), 89
SettingCodes (class in h2.settings), 87
Settings (class in h2.settings), 87
SETTINGS_TIMEOUT (h2.errors.ErrorCodes at-

tribute), 87
SettingsAcknowledged (class in h2.events), 83
STREAM_CLOSED (h2.errors.ErrorCodes attribute), 87
stream_ended (h2.events.DataReceived attribute), 81
stream_ended (h2.events.RequestReceived attribute),

79

stream_ended (h2.events.ResponseReceived at-
tribute), 80

stream_ended (h2.events.TrailersReceived attribute),
80

stream_id (h2.events.DataReceived attribute), 81
stream_id (h2.events.InformationalResponseReceived

attribute), 81
stream_id (h2.events.PriorityUpdated attribute), 83
stream_id (h2.events.RequestReceived attribute), 79
stream_id (h2.events.ResponseReceived attribute), 80
stream_id (h2.events.StreamEnded attribute), 82
stream_id (h2.events.StreamReset attribute), 82
stream_id (h2.events.TrailersReceived attribute), 80
stream_id (h2.events.WindowUpdated attribute), 81
stream_id (h2.exceptions.NoSuchStreamError at-

tribute), 84
stream_id (h2.exceptions.StreamClosedError at-

tribute), 84
stream_id (h2.exceptions.StreamIDTooLowError at-

tribute), 85
StreamClosedError (class in h2.exceptions), 84
StreamEnded (class in h2.events), 82
StreamIDTooLowError (class in h2.exceptions), 85
StreamReset (class in h2.events), 82

T
TooManyStreamsError (class in h2.exceptions), 85
TrailersReceived (class in h2.events), 80

U
UnknownFrameReceived (class in h2.events), 84
UnsupportedFrameError (class in h2.exceptions),

86
update() (h2.settings.Settings method), 89
update_settings() (h2.connection.H2Connection

method), 78

V
values() (h2.settings.Settings method), 89

W
weight (h2.events.PriorityUpdated attribute), 83
WindowUpdated (class in h2.events), 81

Index 109

	Contents
	Installation
	Getting Started: Writing Your Own HTTP/2 Server
	Negotiating HTTP/2
	Code Examples
	Advanced Usage
	Low-Level Details
	h2 API
	Testimonials
	Release Process
	Release Notes
	Release History

	Python Module Index
	Index

