
priority Documentation
Release 1.3.0

Cory Benfield

Jun 15, 2021

Contents

1 Installation 3

2 Using Priority 5
2.1 Iterating The Tree . 5
2.2 Updating The Tree . 6
2.3 Removing Streams . 6

3 Priority API 7
3.1 Priority Tree . 7
3.2 Exceptions . 8

4 Vulnerability Notifications 9
4.1 Known Vulnerabilities . 9

5 License 11

6 Contributors 13
6.1 Development Lead . 13
6.2 Contributors . 13

Index 15

i

ii

priority Documentation, Release 1.3.0

Priority is a pure-Python implementation of the priority logic for HTTP/2, set out in RFC 7540 Section 5.3 (Stream
Priority). This logic allows for clients to express a preference for how the server allocates its (limited) resources to the
many outstanding HTTP requests that may be running over a single HTTP/2 connection.

Specifically, this Python implementation uses a variant of the implementation used in the excellent H2O project. This
original implementation is also the inspiration for nghttp2’s priority implementation, and generally produces a very
clean and even priority stream. The only notable changes from H2O’s implementation are small modifications to allow
the priority implementation to work cleanly as a separate implementation, rather than being embedded in a HTTP/2
stack directly.

Contents:

Contents 1

https://tools.ietf.org/html/rfc7540#section-5.3
https://tools.ietf.org/html/rfc7540#section-5.3
https://h2o.examp1e.net/
https://nghttp2.org/blog/2015/11/11/stream-scheduling-utilizing-http2-priority/

priority Documentation, Release 1.3.0

2 Contents

CHAPTER 1

Installation

Priority is a pure-Python project. This means installing it is extremely simple. To get the latest release from PyPI,
simply run:

$ pip install priority

3

priority Documentation, Release 1.3.0

4 Chapter 1. Installation

CHAPTER 2

Using Priority

Priority has a simple API. Streams are inserted into the tree: when they are inserted, they may optionally have a
weight, depend on another stream, or become an exclusive dependent of another stream. To manipulate the tree, we
use a PriorityTree object.

>>> p = priority.PriorityTree()
>>> p.insert_stream(stream_id=1)
>>> p.insert_stream(stream_id=3)
>>> p.insert_stream(stream_id=5, depends_on=1)
>>> p.insert_stream(stream_id=7, weight=32)
>>> p.insert_stream(stream_id=9, depends_on=7, weight=8)
>>> p.insert_stream(stream_id=11, depends_on=7, exclusive=True)

Once streams are inserted, the stream priorities can be requested. This allows the server to make decisions about how
to allocate resources.

2.1 Iterating The Tree

The tree in this algorithm acts as a gate. Its goal is to allow one stream “through” at a time, in such a manner that all
the active streams are served as evenly as possible in proportion to their weights.

This is handled in Priority by iterating over the tree. The tree itself is an iterator, and each time it is advanced it will
yield a stream ID. This is the ID of the stream that should next send data.

This looks like this:

>>> for stream_id in p:
... send_data(stream_id)

If each stream only sends when it is ‘ungated’ by this mechanism, the server will automatically be emitting stream
data in conformance to RFC 7540.

5

priority Documentation, Release 1.3.0

2.2 Updating The Tree

If for any reason a stream is unable to proceed (for example, it is blocked on HTTP/2 flow control, or it is waiting for
more data from another service), that stream is blocked. The PriorityTree should be informed that the stream
is blocked so that other dependent streams get a chance to proceed. This can be done by calling the block method
of the tree with the stream ID that is currently unable to proceed. This will automatically update the tree, and it will
adjust on the fly to correctly allow any streams that were dependent on the blocked one to progress.

For example:

>>> for stream_id in p:
... send_data(stream_id)
... if blocked(stream_id):
... p.block(stream_id)

When a stream goes from being blocked to being unblocked, call the unblock method to place it back into the
sequence. Both the block and unblock methods are idempotent and safe to call repeatedly.

Additionally, the priority of a stream may change. When it does, the reprioritize method can be used to update
the tree in the wake of that change. reprioritize has the same signature as insert_stream, but applies only
to streams already in the tree.

2.3 Removing Streams

A stream can be entirely removed from the tree by calling remove_stream. Note that this is not idempotent.
Further, calling remove_stream and then re-adding it may cause a substantial change in the shape of the priority
tree, and will cause the iteration order to change.

6 Chapter 2. Using Priority

CHAPTER 3

Priority API

3.1 Priority Tree

class priority.PriorityTree(maximum_streams=1000)
A HTTP/2 Priority Tree.

This tree stores HTTP/2 streams according to their HTTP/2 priorities.

Changed in version 1.2.0: Added maximum_streams keyword argument.

Parameters maximum_streams (int) – The maximum number of streams that may be active
in the priority tree at any one time. If this number is exceeded, the priority tree will raise a
TooManyStreamsError and will refuse to insert the stream.

This parameter exists to defend against the possibility of DoS attack by attempting to overfill the
priority tree. If any endpoint is attempting to manage the priority of this many streams at once it
is probably trying to screw with you, so it is sensible to simply refuse to play ball at that point.

While we allow the user to configure this, we don’t really expect them too, unless they want to
be even more conservative than we are by default.

block(stream_id)
Marks a given stream as blocked, with no data to send.

Parameters stream_id – The ID of the stream to block.

insert_stream(stream_id, depends_on=None, weight=16, exclusive=False)
Insert a stream into the tree.

Parameters

• stream_id – The stream ID of the stream being inserted.

• depends_on – (optional) The ID of the stream that the new stream depends on, if any.

• weight – (optional) The weight to give the new stream. Defaults to 16.

• exclusive – (optional) Whether this new stream should be an exclusive dependency of
the parent.

7

priority Documentation, Release 1.3.0

remove_stream(stream_id)
Removes a stream from the priority tree.

Parameters stream_id – The ID of the stream to remove.

reprioritize(stream_id, depends_on=None, weight=16, exclusive=False)
Update the priority status of a stream already in the tree.

Parameters

• stream_id – The stream ID of the stream being updated.

• depends_on – (optional) The ID of the stream that the stream now depends on. If None,
will be moved to depend on stream 0.

• weight – (optional) The new weight to give the stream. Defaults to 16.

• exclusive – (optional) Whether this stream should now be an exclusive dependency of
the new parent.

unblock(stream_id)
Marks a given stream as unblocked, with more data to send.

Parameters stream_id – The ID of the stream to unblock.

3.2 Exceptions

class priority.DeadlockError
Raised when there are no streams that can make progress: all streams are blocked.

class priority.PriorityLoop
An unexpected priority loop has been detected. The tree is invalid.

class priority.DuplicateStreamError
An attempt was made to insert a stream that already exists.

class priority.MissingStreamError
An operation was attempted on a stream that is not present in the tree.

class priority.TooManyStreamsError
An attempt was made to insert a dangerous number of streams into the priority tree at the same time.

New in version 1.2.0.

class priority.BadWeightError
An attempt was made to create a stream with an invalid weight.

New in version 1.3.0.

class priority.PseudoStreamError
An operation was attempted on stream 0.

New in version 1.3.0.

8 Chapter 3. Priority API

CHAPTER 4

Vulnerability Notifications

This section of the page contains all known vulnerabilities in the priority library. These vulnerabilities have all been
reported to us via our vulnerability disclosure policy.

4.1 Known Vulnerabilities

Vulnerability Date An-
nounced

First Ver-
sion

Last Version CVE

1 DoS via unlimited stream insertion. 2016-08-04 1.0.0 1.1.1 CVE-2016-
6580

9

http://python-hyper.org/en/latest/security.html#vulnerability-disclosure

priority Documentation, Release 1.3.0

10 Chapter 4. Vulnerability Notifications

CHAPTER 5

License

Copyright (c) 2015 Cory Benfield

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

11

priority Documentation, Release 1.3.0

12 Chapter 5. License

CHAPTER 6

Contributors

Priority is written and maintained by Cory Benfield and various contributors:

6.1 Development Lead

• Cory Benfield <cory@lukasa.co.uk>

6.2 Contributors

In chronological order:

13

mailto:cory@lukasa.co.uk

priority Documentation, Release 1.3.0

14 Chapter 6. Contributors

Index

B
BadWeightError (class in priority), 8
block() (priority.PriorityTree method), 7

D
DeadlockError (class in priority), 8
DuplicateStreamError (class in priority), 8

I
insert_stream() (priority.PriorityTree method), 7

M
MissingStreamError (class in priority), 8

P
PriorityLoop (class in priority), 8
PriorityTree (class in priority), 7
PseudoStreamError (class in priority), 8

R
remove_stream() (priority.PriorityTree method), 7
reprioritize() (priority.PriorityTree method), 8

T
TooManyStreamsError (class in priority), 8

U
unblock() (priority.PriorityTree method), 8

15

	Installation
	Using Priority
	Iterating The Tree
	Updating The Tree
	Removing Streams

	Priority API
	Priority Tree
	Exceptions

	Vulnerability Notifications
	Known Vulnerabilities

	License
	Contributors
	Development Lead
	Contributors

	Index

