

Priority: A pure-Python HTTP/2 Priority implementation

Priority is a pure-Python implementation of the priority logic for HTTP/2, set
out in RFC 7540 Section 5.3 (Stream Priority) [https://tools.ietf.org/html/rfc7540#section-5.3]. This logic allows for clients
to express a preference for how the server allocates its (limited) resources to
the many outstanding HTTP requests that may be running over a single HTTP/2
connection.

Specifically, this Python implementation uses a variant of the implementation
used in the excellent H2O [https://h2o.examp1e.net/] project. This original implementation is also the
inspiration for nghttp2’s [https://nghttp2.org/blog/2015/11/11/stream-scheduling-utilizing-http2-priority/] priority implementation, and generally produces a
very clean and even priority stream. The only notable changes from H2O’s
implementation are small modifications to allow the priority implementation to
work cleanly as a separate implementation, rather than being embedded in a
HTTP/2 stack directly.

Contents:

	Installation

	Using Priority
	Iterating The Tree

	Updating The Tree

	Removing Streams

	Priority API
	Priority Tree

	Exceptions

	Vulnerability Notifications
	Known Vulnerabilities

	License

	Contributors
	Development Lead

	Contributors

Installation

Priority is a pure-Python project. This means installing it is extremely
simple. To get the latest release from PyPI, simply run:

$ pip install priority

Using Priority

Priority has a simple API. Streams are inserted into the tree: when they are
inserted, they may optionally have a weight, depend on another stream, or
become an exclusive dependent of another stream. To manipulate the tree, we
use a PriorityTree object.

>>> p = priority.PriorityTree()
>>> p.insert_stream(stream_id=1)
>>> p.insert_stream(stream_id=3)
>>> p.insert_stream(stream_id=5, depends_on=1)
>>> p.insert_stream(stream_id=7, weight=32)
>>> p.insert_stream(stream_id=9, depends_on=7, weight=8)
>>> p.insert_stream(stream_id=11, depends_on=7, exclusive=True)

Once streams are inserted, the stream priorities can be requested. This allows
the server to make decisions about how to allocate resources.

Iterating The Tree

The tree in this algorithm acts as a gate. Its goal is to allow one stream
“through” at a time, in such a manner that all the active streams are served as
evenly as possible in proportion to their weights.

This is handled in Priority by iterating over the tree. The tree itself is an
iterator, and each time it is advanced it will yield a stream ID. This is the
ID of the stream that should next send data.

This looks like this:

>>> for stream_id in p:
... send_data(stream_id)

If each stream only sends when it is ‘ungated’ by this mechanism, the server
will automatically be emitting stream data in conformance to RFC 7540.

Updating The Tree

If for any reason a stream is unable to proceed (for example, it is blocked on
HTTP/2 flow control, or it is waiting for more data from another service), that
stream is blocked. The PriorityTree should
be informed that the stream is blocked so that other dependent streams get a
chance to proceed. This can be done by calling the
block method of the tree with the stream
ID that is currently unable to proceed. This will automatically update the
tree, and it will adjust on the fly to correctly allow any streams that were
dependent on the blocked one to progress.

For example:

>>> for stream_id in p:
... send_data(stream_id)
... if blocked(stream_id):
... p.block(stream_id)

When a stream goes from being blocked to being unblocked, call the
unblock method to place it back into
the sequence. Both the block and
unblock methods are idempotent and safe
to call repeatedly.

Additionally, the priority of a stream may change. When it does, the
reprioritize method can be used to
update the tree in the wake of that change.
reprioritize has the same
signature as insert_stream, but
applies only to streams already in the tree.

Removing Streams

A stream can be entirely removed from the tree by calling
remove_stream. Note that this is
not idempotent. Further, calling
remove_stream and then re-adding
it may cause a substantial change in the shape of the priority tree, and
will cause the iteration order to change.

Priority API

Priority Tree

	
class priority.PriorityTree(maximum_streams: int = 1000)

	A HTTP/2 Priority Tree.

This tree stores HTTP/2 streams according to their HTTP/2 priorities.

Changed in version 1.2.0: Added maximum_streams keyword argument.

	Parameters

	maximum_streams (int) – The maximum number of streams that may be active in
the priority tree at any one time. If this number is exceeded, the
priority tree will raise a TooManyStreamsError and will refuse to insert the stream.

This parameter exists to defend against the possibility of DoS attack
by attempting to overfill the priority tree. If any endpoint is
attempting to manage the priority of this many streams at once it is
probably trying to screw with you, so it is sensible to simply refuse
to play ball at that point.

While we allow the user to configure this, we don’t really expect
them too, unless they want to be even more conservative than we are by
default.

	
block(stream_id: int) → None

	Marks a given stream as blocked, with no data to send.

	Parameters

	stream_id – The ID of the stream to block.

	
insert_stream(stream_id: int, depends_on: Optional[int] = None, weight: int = 16, exclusive: bool = False) → None

	Insert a stream into the tree.

	Parameters

	
	stream_id – The stream ID of the stream being inserted.

	depends_on – (optional) The ID of the stream that the new stream
depends on, if any.

	weight – (optional) The weight to give the new stream. Defaults
to 16.

	exclusive – (optional) Whether this new stream should be an
exclusive dependency of the parent.

	
remove_stream(stream_id: int) → None

	Removes a stream from the priority tree.

	Parameters

	stream_id – The ID of the stream to remove.

	
reprioritize(stream_id: int, depends_on: Optional[int] = None, weight: int = 16, exclusive: bool = False) → None

	Update the priority status of a stream already in the tree.

	Parameters

	
	stream_id – The stream ID of the stream being updated.

	depends_on – (optional) The ID of the stream that the stream now
depends on. If None, will be moved to depend on stream 0.

	weight – (optional) The new weight to give the stream. Defaults
to 16.

	exclusive – (optional) Whether this stream should now be an
exclusive dependency of the new parent.

	
unblock(stream_id: int) → None

	Marks a given stream as unblocked, with more data to send.

	Parameters

	stream_id – The ID of the stream to unblock.

Exceptions

	
class priority.PriorityError

	The base class for all priority exceptions.

	
class priority.DeadlockError

	Raised when there are no streams that can make progress: all streams are
blocked.

	
class priority.PriorityLoop

	An unexpected priority loop has been detected. The tree is invalid.

	
class priority.DuplicateStreamError

	An attempt was made to insert a stream that already exists.

	
class priority.MissingStreamError

	An operation was attempted on a stream that is not present in the tree.

	
class priority.TooManyStreamsError

	An attempt was made to insert a dangerous number of streams into the
priority tree at the same time.

New in version 1.2.0.

	
class priority.BadWeightError

	An attempt was made to create a stream with an invalid weight.

New in version 1.3.0.

	
class priority.PseudoStreamError

	An operation was attempted on stream 0.

New in version 1.3.0.

Vulnerability Notifications

This section of the page contains all known vulnerabilities in the priority
library. These vulnerabilities have all been reported to us via our
vulnerability disclosure policy [http://python-hyper.org/en/latest/security.html#vulnerability-disclosure].

Known Vulnerabilities

	#

	Vulnerability

	Date Announced

	First Version

	Last Version

	CVE

	1

	DoS via unlimited
stream insertion.

	2016-08-04

	1.0.0

	1.1.1

	CVE-2016-6580

License

Copyright (c) 2015 Cory Benfield

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Contributors

Priority is written and maintained by Cory Benfield and various contributors:

Development Lead

	Cory Benfield <cory@lukasa.co.uk>

Contributors

In chronological order:

Index

 B
 | D
 | I
 | M
 | P
 | R
 | T
 | U

B

 	
 	BadWeightError (class in priority)

 	
 	block() (priority.PriorityTree method)

D

 	
 	DeadlockError (class in priority)

 	
 	DuplicateStreamError (class in priority)

I

 	
 	insert_stream() (priority.PriorityTree method)

M

 	
 	MissingStreamError (class in priority)

P

 	
 	PriorityError (class in priority)

 	PriorityLoop (class in priority)

 	
 	PriorityTree (class in priority)

 	PseudoStreamError (class in priority)

R

 	
 	remove_stream() (priority.PriorityTree method)

 	
 	reprioritize() (priority.PriorityTree method)

T

 	
 	TooManyStreamsError (class in priority)

U

 	
 	unblock() (priority.PriorityTree method)

 All modules for which code is available

	priority.priority

 Source code for priority.priority

-*- coding: utf-8 -*-
"""
priority/tree
~~~~~~~~~~~~~

Implementation of the Priority tree data structure.
"""

import heapq

from typing import List, Tuple, Optional


[docs]class PriorityError(Exception):
    """
    The base class for all ``priority`` exceptions.
    """



[docs]class DeadlockError(PriorityError):
    """
    Raised when there are no streams that can make progress: all streams are
    blocked.
    """

    pass



[docs]class PriorityLoop(PriorityError):
    """
    An unexpected priority loop has been detected. The tree is invalid.
    """

    pass



[docs]class DuplicateStreamError(PriorityError):
    """
    An attempt was made to insert a stream that already exists.
    """

    pass



[docs]class MissingStreamError(KeyError, PriorityError):
    """
    An operation was attempted on a stream that is not present in the tree.
    """

    pass



[docs]class TooManyStreamsError(PriorityError):
    """
    An attempt was made to insert a dangerous number of streams into the
    priority tree at the same time.

    .. versionadded:: 1.2.0
    """

    pass



[docs]class BadWeightError(PriorityError):
    """
    An attempt was made to create a stream with an invalid weight.

    .. versionadded:: 1.3.0
    """

    pass



[docs]class PseudoStreamError(PriorityError):
    """
    An operation was attempted on stream 0.

    .. versionadded:: 1.3.0
    """

    pass



class Stream:
    """
    Priority information for a given stream.

    :param stream_id: The stream ID for the new stream.
    :param weight: (optional) The stream weight. Defaults to 16.
    """

    def __init__(self, stream_id: int, weight: int = 16) -> None:
        self.stream_id = stream_id
        self.weight = weight
        self.children: List[Stream] = []
        self.parent: Optional[Stream] = None
        self.child_queue: List[Tuple[int, Stream]] = []
        self.active = True
        self.last_weight = 0
        self._deficit = 0

    @property
    def weight(self) -> int:
        return self._weight

    @weight.setter
    def weight(self, value: int) -> None:
        # RFC 7540 § 5.3.2: "All dependent streams are allocated an integer
        # weight between 1 and 256 (inclusive)."
        if not isinstance(value, int):
            raise BadWeightError("Stream weight should be an integer")
        elif not (1 <= value <= 256):
            raise BadWeightError("Stream weight must be between 1 and 256 (inclusive)")
        self._weight = value

    def add_child(self, child: "Stream") -> None:
        """
        Add a stream that depends on this one.

        :param child: A ``Stream`` object that depends on this one.
        """
        child.parent = self
        self.children.append(child)
        heapq.heappush(self.child_queue, (self.last_weight, child))

    def add_child_exclusive(self, child: "Stream") -> None:
        """
        Add a stream that exclusively depends on this one.

        :param child: A ``Stream`` object that exclusively depends on this one.
        """
        old_children = self.children
        self.children = []
        self.child_queue = []
        self.last_weight = 0
        self.add_child(child)

        for old_child in old_children:
            child.add_child(old_child)

    def remove_child(
        self,
        child: "Stream",
        strip_children: bool = True,
    ) -> None:
        """
        Removes a child stream from this stream. This is a potentially somewhat
        expensive operation.

        :param child: The child stream to remove.
        :param strip_children: Whether children of the removed stream should
            become children of this stream.
        """
        # To do this we do the following:
        #
        # - remove the child stream from the list of children
        # - build a new priority queue, filtering out the child when we find
        #   it in the old one
        self.children.remove(child)

        new_queue: List[Tuple[int, Stream]] = []

        while self.child_queue:
            level, stream = heapq.heappop(self.child_queue)
            if stream == child:
                continue

            heapq.heappush(new_queue, (level, stream))

        self.child_queue = new_queue

        if strip_children:
            for new_child in child.children:
                self.add_child(new_child)

    def schedule(self) -> int:
        """
        Returns the stream ID of the next child to schedule. Potentially
        recurses down the tree of priorities.
        """
        # Cannot be called on active streams.
        assert not self.active

        next_stream = None
        popped_streams = []

        # Spin looking for the next active stream. Everything we pop off has
        # to be rescheduled, even if it turns out none of them were active at
        # this time.
        try:
            while next_stream is None:
                # If the queue is empty, immediately fail.
                val = heapq.heappop(self.child_queue)
                popped_streams.append(val)
                level, child = val

                if child.active:
                    next_stream = child.stream_id
                else:
                    # Guard against the possibility that the child also has no
                    # suitable children.
                    try:
                        next_stream = child.schedule()
                    except IndexError:
                        continue
        finally:
            for level, child in popped_streams:
                self.last_weight = level
                level += (256 + child._deficit) // child.weight
                child._deficit = (256 + child._deficit) % child.weight
                heapq.heappush(self.child_queue, (level, child))

        return next_stream

    # Custom repr
    def __repr__(self) -> str:
        return "Stream<id=%d, weight=%d>" % (self.stream_id, self.weight)

    # Custom comparison
    def __eq__(self, other: object) -> bool:
        if not isinstance(other, Stream):  # pragma: no cover
            return False

        return self.stream_id == other.stream_id

    def __ne__(self, other: object) -> bool:
        return not self.__eq__(other)

    def __lt__(self, other: "Stream") -> bool:
        if not isinstance(other, Stream):  # pragma: no cover
            return NotImplemented

        return self.stream_id < other.stream_id

    def __le__(self, other: "Stream") -> bool:
        if not isinstance(other, Stream):  # pragma: no cover
            return NotImplemented

        return self.stream_id <= other.stream_id

    def __gt__(self, other: "Stream") -> bool:
        if not isinstance(other, Stream):  # pragma: no cover
            return NotImplemented

        return self.stream_id > other.stream_id

    def __ge__(self, other: "Stream") -> bool:
        if not isinstance(other, Stream):  # pragma: no cover
            return NotImplemented

        return self.stream_id >= other.stream_id


def _stream_cycle(new_parent: Stream, current: Stream) -> bool:
    """
    Reports whether the new parent depends on the current stream.
    """
    parent = new_parent

    # Don't iterate forever, but instead assume that the tree doesn't
    # get more than 100 streams deep. This should catch accidental
    # tree loops. This is the definition of defensive programming.
    for _ in range(100):
        parent = parent.parent  # type: ignore[assignment]
        if parent.stream_id == current.stream_id:
            return True
        elif parent.stream_id == 0:
            return False

    raise PriorityLoop(
        "Stream %d is in a priority loop." % new_parent.stream_id
    )  # pragma: no cover


[docs]class PriorityTree:
    """
    A HTTP/2 Priority Tree.

    This tree stores HTTP/2 streams according to their HTTP/2 priorities.

    .. versionchanged:: 1.2.0
       Added ``maximum_streams`` keyword argument.

    :param maximum_streams: The maximum number of streams that may be active in
        the priority tree at any one time. If this number is exceeded, the
        priority tree will raise a :class:`TooManyStreamsError
        <priority.TooManyStreamsError>` and will refuse to insert the stream.

        This parameter exists to defend against the possibility of DoS attack
        by attempting to overfill the priority tree. If any endpoint is
        attempting to manage the priority of this many streams at once it is
        probably trying to screw with you, so it is sensible to simply refuse
        to play ball at that point.

        While we allow the user to configure this, we don't really *expect*
        them too, unless they want to be even more conservative than we are by
        default.
    :type maximum_streams: ``int``
    """

    def __init__(self, maximum_streams: int = 1000) -> None:
        # This flat array keeps hold of all the streams that are logically
        # dependent on stream 0.
        self._root_stream = Stream(stream_id=0, weight=1)
        self._root_stream.active = False
        self._streams = {0: self._root_stream}

        if not isinstance(maximum_streams, int):
            raise TypeError("maximum_streams must be an int.")
        if maximum_streams <= 0:
            raise ValueError("maximum_streams must be a positive integer.")
        self._maximum_streams = maximum_streams

    def _get_or_insert_parent(self, parent_stream_id: int) -> Stream:
        """
        When inserting or reprioritizing a stream it is possible to make it
        dependent on a stream that is no longer in the tree. In this situation,
        rather than bail out, we should insert the parent stream into the tree
        with default priority and mark it as blocked.
        """
        try:
            return self._streams[parent_stream_id]
        except KeyError:
            self.insert_stream(parent_stream_id)
            self.block(parent_stream_id)
            return self._streams[parent_stream_id]

    def _exclusive_insert(
        self,
        parent_stream: Stream,
        inserted_stream: Stream,
    ) -> None:
        """
        Insert ``inserted_stream`` beneath ``parent_stream``, obeying the
        semantics of exclusive insertion.
        """
        parent_stream.add_child_exclusive(inserted_stream)

[docs]    def insert_stream(
        self,
        stream_id: int,
        depends_on: Optional[int] = None,
        weight: int = 16,
        exclusive: bool = False,
    ) -> None:
        """
        Insert a stream into the tree.

        :param stream_id: The stream ID of the stream being inserted.
        :param depends_on: (optional) The ID of the stream that the new stream
            depends on, if any.
        :param weight: (optional) The weight to give the new stream. Defaults
            to 16.
        :param exclusive: (optional) Whether this new stream should be an
            exclusive dependency of the parent.
        """
        if stream_id in self._streams:
            raise DuplicateStreamError("Stream %d already in tree" % stream_id)

        if (len(self._streams) + 1) > self._maximum_streams:
            raise TooManyStreamsError(
                "Refusing to insert %d streams into priority tree at once"
                % (self._maximum_streams + 1)
            )

        stream = Stream(stream_id, weight)

        if not depends_on:
            depends_on = 0
        elif depends_on == stream_id:
            raise PriorityLoop("Stream %d must not depend on itself." % stream_id)

        if exclusive:
            parent_stream = self._get_or_insert_parent(depends_on)
            self._exclusive_insert(parent_stream, stream)
            self._streams[stream_id] = stream
            return

        parent = self._get_or_insert_parent(depends_on)
        parent.add_child(stream)
        self._streams[stream_id] = stream


[docs]    def reprioritize(
        self,
        stream_id: int,
        depends_on: Optional[int] = None,
        weight: int = 16,
        exclusive: bool = False,
    ) -> None:
        """
        Update the priority status of a stream already in the tree.

        :param stream_id: The stream ID of the stream being updated.
        :param depends_on: (optional) The ID of the stream that the stream now
            depends on. If ``None``, will be moved to depend on stream 0.
        :param weight: (optional) The new weight to give the stream. Defaults
            to 16.
        :param exclusive: (optional) Whether this stream should now be an
            exclusive dependency of the new parent.
        """
        if stream_id == 0:
            raise PseudoStreamError("Cannot reprioritize stream 0")

        try:
            current_stream = self._streams[stream_id]
        except KeyError:
            raise MissingStreamError("Stream %d not in tree" % stream_id)

        # Update things in a specific order to make sure the calculation
        # behaves properly. Specifically, we first update the weight. Then,
        # we check whether this stream is being made dependent on one of its
        # own dependents. Then, we remove this stream from its current parent
        # and move it to its new parent, taking its children with it.
        if depends_on:
            if depends_on == stream_id:
                raise PriorityLoop("Stream %d must not depend on itself" % stream_id)

            new_parent = self._get_or_insert_parent(depends_on)
            cycle = _stream_cycle(new_parent, current_stream)
        else:
            new_parent = self._streams[0]
            cycle = False

        current_stream.weight = weight

        # Our new parent is currently dependent on us. We should remove it from
        # its parent, and make it a child of our current parent, and then
        # continue.
        if cycle:
            new_parent.parent.remove_child(  # type: ignore[union-attr]
                new_parent,
            )
            current_stream.parent.add_child(  # type: ignore[union-attr]
                new_parent,
            )

        current_stream.parent.remove_child(  # type: ignore[union-attr]
            current_stream, strip_children=False
        )

        if exclusive:
            new_parent.add_child_exclusive(current_stream)
        else:
            new_parent.add_child(current_stream)


[docs]    def remove_stream(self, stream_id: int) -> None:
        """
        Removes a stream from the priority tree.

        :param stream_id: The ID of the stream to remove.
        """
        if stream_id == 0:
            raise PseudoStreamError("Cannot remove stream 0")

        try:
            child = self._streams.pop(stream_id)
        except KeyError:
            raise MissingStreamError("Stream %d not in tree" % stream_id)

        parent = child.parent
        parent.remove_child(child)  # type: ignore[union-attr]


[docs]    def block(self, stream_id: int) -> None:
        """
        Marks a given stream as blocked, with no data to send.

        :param stream_id: The ID of the stream to block.
        """
        if stream_id == 0:
            raise PseudoStreamError("Cannot block stream 0")

        try:
            self._streams[stream_id].active = False
        except KeyError:
            raise MissingStreamError("Stream %d not in tree" % stream_id)


[docs]    def unblock(self, stream_id: int) -> None:
        """
        Marks a given stream as unblocked, with more data to send.

        :param stream_id: The ID of the stream to unblock.
        """
        if stream_id == 0:
            raise PseudoStreamError("Cannot unblock stream 0")

        try:
            self._streams[stream_id].active = True
        except KeyError:
            raise MissingStreamError("Stream %d not in tree" % stream_id)


    # The iterator protocol
    def __iter__(self) -> "PriorityTree":  # pragma: no cover
        return self

    def __next__(self) -> int:  # pragma: no cover
        try:
            return self._root_stream.schedule()
        except IndexError:
            raise DeadlockError("No unblocked streams to schedule.")

    def next(self) -> int:  # pragma: no cover
        return self.__next__()





          

      

      

    

  

    
      
          
            
  
DoS via Unlimited Stream Insertion

Hyper Project security advisory, August 4th 2016.


Vulnerability

A HTTP/2 implementation built using the priority library could be targetted by
a malicious peer by having that peer assign priority information for every
possible HTTP/2 stream ID. The priority tree would happily continue to store
the priority information for each stream, and would therefore allocate
unbounded amounts of memory. Attempting to actually use a tree like this
would also cause extremely high CPU usage to maintain the tree.

We are not aware of any active exploits of this vulnerability, but as this
class of attack was publicly described in this report [http://www.imperva.com/docs/Imperva_HII_HTTP2.pdf], users should assume
that they are at imminent risk of this kind of attack.



Info

This issue has been given the name CVE-2016-6580.



Affected Versions

This issue affects all versions of the priority library prior to 1.2.0.



The Solution

In version 1.2.0, the priority library limits the maximum number of streams
that can be inserted into the tree. By default this limit is 1000, but it is
user-configurable.

If it is necessary to backport a patch, the patch can be found in
this GitHub pull request [https://github.com/python-hyper/priority/pull/23].



Recommendations

We suggest you take the following actions immediately, in order of preference:


	Update priority to 1.2.0 immediately, and consider revising the maximum
number of streams downward to a suitable value for your application.


	Backport the patch made available on GitHub.


	Manually enforce a limit on the number of priority settings you’ll allow at
once.






Timeline

This class of vulnerability was publicly reported in this report [http://www.imperva.com/docs/Imperva_HII_HTTP2.pdf] on the
3rd of August. We requested a CVE ID from Mitre the same day.

Priority 1.2.0 was released on the 4th of August, at the same time as the
publication of this advisory.





          

      

      

    

  _static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/plus.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          Priority: A pure-Python HTTP/2 Priority implementation
        


        		
          Installation
        


        		
          Using Priority
          
            		
              Iterating The Tree
            


            		
              Updating The Tree
            


            		
              Removing Streams
            


          


        


        		
          Priority API
          
            		
              Priority Tree
            


            		
              Exceptions
            


          


        


        		
          Vulnerability Notifications
          
            		
              Known Vulnerabilities
            


          


        


        		
          License
        


        		
          Contributors
          
            		
              Development Lead
            


            		
              Contributors
            


          


        


      


    
  

_static/up-pressed.png





_static/up.png





