
wsproto Documentation

Benno Rice

May 26, 2019

Contents

1 Installation 3

2 Getting Started 5
2.1 Connections . 5
2.2 Connecting to a WebSocket server . 6
2.3 WebSocket Servers . 7
2.4 Protocol Errors . 7
2.5 Closing . 8
2.6 Ping Pong . 8

3 Advanced Usage 9
3.1 Back-pressure . 9
3.2 Post handshake connection . 10
3.3 HTTP/2 . 10

4 wsproto API 11
4.1 Semantic Versioning . 11
4.2 Connection . 11
4.3 Handshake . 11
4.4 Events . 12
4.5 Frame Protocol . 14
4.6 Extensions . 15
4.7 Exceptions . 15

i

ii

wsproto Documentation

wsproto is a WebSocket protocol stack written to be as flexible as possible. To that end it is written in pure Python and
performs no I/O of its own. Instead it relies on the user to provide a bridge between it and whichever I/O mechanism
is in use, allowing it to be used in single-threaded, multi-threaded or event-driven code.

The goal for wsproto is 100% compliance with RFC 6455. Additionally a mechanism is provided to add extensions
allowing the implementation of extra functionally such as per-message compression as specified in RFC 7692.

For usage examples, see Getting Started or see the examples provided.

Contents:

Contents 1

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc7692

wsproto Documentation

2 Contents

CHAPTER 1

Installation

wsproto is a pure Python project. To install it you can use pip like so:

$ pip install wsproto

Alternatively you can get either a release tarball or a development branch from our GitHub repository and run:

$ python setup.py install

3

https://github.com/python-hyper/wsproto

wsproto Documentation

4 Chapter 1. Installation

CHAPTER 2

Getting Started

This document explains how to get started using wsproto to connect to WebSocket servers as well as how to write your
own.

We assume some level of familiarity with writing Python and networking code. If you’re not familiar with these we
highly recommend you read up on these first. It may also be helpful to study Sans-I/O, which describes the ideas
behind writing a network protocol library that doesn’t do any network I/O.

2.1 Connections

The main class you’ll be working with is the WSConnection object. This object represents a connection to a
WebSocket client or server and contains all the state needed to communicate with the entity at the other end. Whether
you’re connecting to a server or receiving a connection from a client, this is the object you’ll use.

wsproto provides two layers of abstractions. You need to write code that interfaces with both of these layers. The
following diagram illustrates how your code is like a sandwich around wsproto.

Application
<APPLICATION GLUE>
wsproto
<NETWORK GLUE>
Network Layer

wsproto does not do perform any network I/O, so <NETWORK GLUE> represents the code you need to write to glue
wsproto to the actual network layer, i.e. code that can send and receive data over the network. The WSConnection
class provides two methods for this purpose. When data has been received on a network socket, you feed this data into
wsproto by calling receive_data. When wsproto sends events the send will return the bytes that need to be sent
over the network. Your code is responsible for actually sending that data over the network.

Note: If the connection drops, a standard Python socket.recv() will return zero. You should call
receive_data(None) to update the internal wsproto state to indicate that the connection has been closed.

5

https://docs.python.org/3/howto/sockets.html
https://sans-io.readthedocs.io/

wsproto Documentation

Internally, wsproto process the raw network data you feed into it and turns it into higher level representations of Web-
Socket events. In <APPLICATION GLUE>, you need to write code to process these events. The WSConnection
class contains a generator method events that yields WebSocket events. To send a message, you call the send
method.

2.2 Connecting to a WebSocket server

Begin by instantiating a connection object in the client mode and then create a Request instance to send. The Request
must specify host and target arguments. If the WebSocket server is located at http://example.com/foo,
then you would instantiate the connection as follows:

ws = WSConnection(ConnectionType.CLIENT)
ws.send(Request(host="example.com", target='foo'))

Now you need to provide the network glue. For the sake of example, we will use standard Python sockets here, but
wsproto can be integrated with any network layer:

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("example.com", 80))

To read from the network:

data = sock.recv(4096)
ws.receive_data(data)

You also need to send data returned by the send method:

data = ws.send(Message(data=b"Hello"))
sock.send(data)

A standard Python socket will block on the call to sock.recv(), so you will probably need to use a non-blocking
socket or some form of concurrency like threading, greenlets, asyncio, etc.

You also need to provide the application glue. To send a WebSocket message:

ws.send(Message(data="Hello world!"))

And to receive WebSocket events:

for event in ws.events():
if isinstance(event, AcceptConnection):

print('Connection established')
elif isinstance(event, RejectConnection):

print('Connection rejected')
elif isinstance(event, CloseConnection):

print('Connection closed: code={} reason={}'.format(
event.code, event.reason

))
sock.send(ws.send(event.response()))

elif isinstance(event, Ping):
print('Received Ping frame with payload {}'.format(event.payload))
sock.send(ws.send(event.response()))

elif isinstance(event, TextMessage):
print('Received TEXT data: {}'.format(event.data))
if event.message_finished:

(continues on next page)

6 Chapter 2. Getting Started

wsproto Documentation

(continued from previous page)

print('Message finished.')
elif isinstance(event, BytesMessage):

print('Received BINARY data: {}'.format(event.data))
if event.message_finished:

print('BINARY Message finished.')
else:

print('Unknown event: {!r}'.format(event))

The method events() returns a generator which will yield events for all of the data currently in the wsproto internal
buffer and then exit. Therefore, you should iterate over this generator after receiving new network data.

For a more complete example, see synchronous_client.py.

2.3 WebSocket Servers

A WebSocket server is similar to a client except that it uses a different constant:

ws = WSConnection(ConnectionType.SERVER)

A server also needs to explicitly send an AcceptConnection after it receives a Request event:

for event in ws.events():
if isinstance(event, Request):

print('Accepting connection request')
sock.send(ws.send(AcceptConnection()))

elif isinstance(event, CloseConnection):
print('Connection closed: code={} reason={}'.format(

event.code, event.reason
))
sock.send(ws.send(event.response()))

elif isinstance(event, Ping):
print('Received Ping frame with payload {}'.format(event.payload))
sock.send(ws.send(event.response()))

elif isinstance(event, TextMessage):
print('Received TEXT data: {}'.format(event.data))
if event.message_finished:

print('TEXT Message finished.')
elif isinstance(event, BinaryMessage):

print('Received BINARY data: {}'.format(event.data))
if event.message_finished:

print('BINARY Message finished.')
else:

print('Unknown event: {!r}'.format(event))

Alternatively a server can explicitly reject the connection by sending RejectConnection after receiving a
Request event.

For a more complete example, see synchronous_server.py.

2.4 Protocol Errors

Protocol errors relating to either incorrect data or incorrect state changes are raised when the connection receives
data or when events are sent. A LocalProtocolError is raised if the local actions are in error whereas a

2.3. WebSocket Servers 7

https://github.com/python-hyper/wsproto/blob/master/example/synchronous_client.py
https://github.com/python-hyper/wsproto/blob/master/example/synchronous_server.py

wsproto Documentation

RemoteProtocolError is raised if the remote actions are in error.

2.5 Closing

WebSockets are closed with a handshake that requires each endpoint to send one frame and receive one frame. Sending
a CloseConnection instance sets the state to LOCAL_CLOSING. When a close frame is received, it yields a
CloseConnection event, sets the state to REMOTE_CLOSING and requires a reply to be sent, this reply should
be a CloseConnection event. To aid with this the CloseConnection class has a response() method to
create the appropriate reply. For example,

if isinstance(event, CloseConnection):
sock.send(ws.send(event.response()))

When the reply has been received by the initiator, it will also yield a CloseConnection event.

Regardless of which endpoint initiates the closing handshake, the server is responsible for tearing down the underlying
connection. When the server receives a CloseConnection event, it should send pending wsproto data (if any) and
then it can start tearing down the underlying connection.

Note: Both client and server connections must remember to reply to CloseConnection events initiated by the
remote party.

2.6 Ping Pong

The WSConnection class supports sending WebSocket ping and pong frames via sending Ping and Pong. When
a Ping frame is received it requires a reply, this reply should be a Pong event. To aid with this the Ping class has
a response() method to create the appropriate reply. For example,

if isinstance(event, Ping):
sock.send(ws.send(event.response()))

Note: Both client and server connections must remember to reply to Ping events initiated by the remote party.

8 Chapter 2. Getting Started

CHAPTER 3

Advanced Usage

This document explains some of the more advanced usage concepts with wsproto. This is assume you are familiar
with wsproto and I/O in Python.

3.1 Back-pressure

Back-pressure is an important concept to understand when implementing a client/server protocol. This section briefly
explains the issue and then explains how to handle back-pressure when using wsproto.

Imagine that you have a WebSocket server that reads messages from the client, does some processing, and then
sends a response. What happens if the client sends messages faster than the server can process them? If
the incoming messages are buffered in memory, then the server will slowly use more and more memory, un-
til the OS eventually kills it. This scenario is directly applicable to wsproto, because every time you call
receive_data(some_byte_string_of_data), it appends that data to an internal buffer.

The slow endpoint needs a way to signal the fast endpoint to stop sending messages until the slow endpoint can catch
up. This signaling is called “back-pressure”. As a Sans-IO library, wsproto is not responsible for network concerns
like back-pressure, so that responsibility belongs to your network glue code.

Fortunately, TCP has the ability to signal backpressure, and the operating system will do that for you automatically—if
you follow a few rules! The OS buffers all incoming and outgoing network data. Standard Python socket methods,
such as send(...) and recv(), copy data to and from those OS buffers. For example, if the peer is sending data
too quickly, then the OS receive buffer will start to get full, and the OS will signal the peer to stop transmitting. When
recv() is called, the OS will copy data from its internal buffer into your process, free up space in its own buffer, and
then signal to the peer to start transmitting again.

Therefore, you need to follow these two rules to implement back-pressure over TCP:

1. Do not receive from the socket faster than your code can process the messages. Your processing code may need
to signal the receiving code when its ready to receive more data.

2. Do not store out-going messages in an unbounded collection. Ideally, out-going messages should be sent to the
OS as soon as possible. If you need to buffer messages in memory, the buffer should be bounded so that it can
not grow indefinitely.

9

wsproto Documentation

3.2 Post handshake connection

A WebSocket connection starts with a handshake, which is an agreement to use the WebSocket protocol, and on which
sub-protocol and extensions to use. It can be advantageous to perform this handshake outside of wsproto, for example
in a dual stack setup whereby the HTTP handling is completed seperately. In this case the Connection class can be
used directly.

connection = Connection(extensions) # Agreed extensions
sock.send(connection.send(Message(data=b"Hi")))

connection.receive_data(sock.recv(4096))

for event in connection.events():
As with WSConnection, only without any handshake events

3.3 HTTP/2

WebSockets over HTTP/2 have a distinct difference to HTTP/1 in that only a single HTTP/2 stream is dedicated to
the WebSocket rather than the entire connection (as in HTTP/1). This requires the HTTP/2 connection to be managed
before the WebSocket connection with Hyper-h2 being recommended for HTTP/2.

Although wsproto doesn’t manage the HTTP/2 connection it can still be used for the WebSocket stream. The HTTP/2
connection will need to handshake the WebSocket stream, with the key being agreement on the extensions used. Once
the extensions have been agreed the Connection class can be used to manage the WebSocket connection, noting
that data to be sent or received will need to be parsed by the HTTP/2 connection first. In practice for a server this looks
like,

from wsproto.connection import Connection, ConnectionType
from wsproto.extensions import PerMessageDeflate
from wsproto.handshake import server_extensions_handshake

WebSocket request has been received
request_extensions: List[str]
supported_extensions = [PerMessageDeflate()]
accepts = server_extensions_handshake(request_extensions, supported_extensions)
if accepts:

response_headers.append({"sec-websocket-extensions": accepts})
Send the response headers
connection = Connection(ConnectionType.SERVER, supported_extensions)

and for a client

from wsproto.connection import Connection, ConnectionType
from wsproto.extensions import PerMessageDeflate
from wsproto.handshake import client_extensions_handshake

WebSocket response has been received
accepted_extensions: List[str]
proposed_extensions = [PerMessageDeflate()]
extensions = client_extensions_handshake(accepted_extensions, proposed_extensions)
connection = Connection(ConnectionType.CLIENT, supported_extensions)

any data received on the stream should be passed to the connection via the receive_bytes method and bytes
returned from the connection.send method should be wrapped in a HTTP/2 data frame and sent.

10 Chapter 3. Advanced Usage

https://python-hyper.org/h2

CHAPTER 4

wsproto API

This document details the API of wsproto.

4.1 Semantic Versioning

wsproto follows semantic versioning for its public API. Please note that the guarantees of semantic versioning apply
only to the API that is documented here. Simply because a method or data field is not prefaced by an underscore does
not make it part of wsproto’s public API. Anything not documented here is subject to change at any time.

4.2 Connection

class wsproto.WSConnection(connection_type)

4.3 Handshake

class wsproto.handshake.H11Handshake(connection_type)
A Handshake implementation for HTTP/1.1 connections.

connection
Return the established connection.

This will either return the connection or raise a LocalProtocolError if the connection has not yet been
established.

initiate_upgrade_connection(headers, path)
Initiate an upgrade connection.

This should be used if the request has already be received and parsed.

11

wsproto Documentation

receive_data(data)
Receive data from the remote.

A list of events that the remote peer triggered by sending this data can be retrieved with events().

send(event)
Send an event to the remote.

This will return the bytes to send based on the event or raise a LocalProtocolError if the event is not valid
given the state.

wsproto.handshake.client_extensions_handshake(accepted, supported)

wsproto.handshake.server_extensions_handshake(requested, supported)
Agree on the extensions to use returning an appropriate header value.

This returns None if there are no agreed extensions

4.4 Events

class wsproto.events.Event(**kwargs)
Base class for wsproto events.

class wsproto.events.Request(**kwargs)
The beginning of a Websocket connection, the HTTP Upgrade request

This event is fired when a SERVER connection receives a WebSocket handshake request (HTTP with upgrade
header).

Fields:

extensions(Union[List[Extension], List[str]])

extra_headers
The additional request headers, excluding extensions, host, subprotocols, and version headers.

host(str)
The hostname, or host header value.

subprotocols List[str]
A list of subprotocols ordered by preference.

target(str)
A list of the subprotocols proposed in the request, as a list of strings.

class wsproto.events.AcceptConnection(**kwargs)
The acceptance of a Websocket upgrade request.

This event is fired when a CLIENT receives an acceptance response from a server. It is also used to accept an
upgrade request when acting as a SERVER.

Fields:

class wsproto.events.RejectConnection(**kwargs)
The rejection of a Websocket upgrade request, the HTTP response.

This event is fired when a CLIENT receives a rejection response from a server. It can be used to reject a request
when sent from as SERVER. If has_body is False the headers must include a content-length or transfer encoding.

Fields:

headers(List[Tuple[bytes, bytes]])
The headers to send with the response.

12 Chapter 4. wsproto API

wsproto Documentation

has_body
This defaults to False, but set to True if there is a body. See also RejectData.

status_code
The response status code.

class wsproto.events.RejectData(**kwargs)
The rejection HTTP response body.

Fields:

body_finished
True if this is the final chunk of the body data.

data(bytes)
The raw body data.

class wsproto.events.CloseConnection(**kwargs)
The end of a Websocket connection, represents a closure frame.

This event is fired after the connection is considered closed.

wsproto automatically emits a CLOSE frame when it receives one, to complete the close-handshake.

Fields:

code
The integer close code to indicate why the connection has closed.

reason
Additional reasoning for why the connection has closed.

class wsproto.events.Message(**kwargs)
The websocket data message.

Fields:

data
The message data as byte string, can be decoded as UTF-8 for TEXT messages. This only represents a
single chunk of data and not a full WebSocket message. You need to buffer and reassemble these chunks
to get the full message.

frame_finished
This has no semantic content, but is provided just in case some weird edge case user wants to be able to
reconstruct the fragmentation pattern of the original stream.

message_finished
True if this frame is the last one of this message, False if more frames are expected.

class wsproto.events.TextMessage(**kwargs)
This event is fired when a data frame with TEXT payload is received.

class wsproto.events.BytesMessage(**kwargs)
This event is fired when a data frame with BINARY payload is received.

class wsproto.events.Ping(**kwargs)
The Ping event can be sent to trigger a ping frame and is fired when a Ping is received.

wsproto automatically emits a PONG frame with the same payload.

Fields:

payload
An optional payload to emit with the ping frame.

4.4. Events 13

wsproto Documentation

class wsproto.events.Pong(**kwargs)
The Pong event is fired when a Pong is received.

Fields:

payload
An optional payload to emit with the pong frame.

4.5 Frame Protocol

class wsproto.frame_protocol.Opcode
RFC 6455, Section 5.2 - Base Framing Protocol

BINARY = 2
Binary message

CLOSE = 8
Close frame

CONTINUATION = 0
Contiuation frame

PING = 9
Ping frame

PONG = 10
Pong frame

TEXT = 1
Text message

class wsproto.frame_protocol.CloseReason
RFC 6455, Section 7.4.1 - Defined Status Codes

ABNORMAL_CLOSURE = 1006
is a reserved value and MUST NOT be set as a status code in a Close control frame by an endpoint. It
is designated for use in applications expecting a status code to indicate that the connection was closed
abnormally, e.g., without sending or receiving a Close control frame.

GOING_AWAY = 1001
indicates that an endpoint is “going away”, such as a server going down or a browser having navigated
away from a page.

INTERNAL_ERROR = 1011
indicates that a server is terminating the connection because it encountered an unexpected condition that
prevented it from fulfilling the request.

INVALID_FRAME_PAYLOAD_DATA = 1007
indicates that an endpoint is terminating the connection because it has received data within a message that
was not consistent with the type of the message (e.g., non-UTF-8 [RFC3629] data within a text message).

MANDATORY_EXT = 1010
indicates that an endpoint (client) is terminating the connection because it has expected the server to ne-
gotiate one or more extension, but the server didn’t return them in the response message of the WebSocket
handshake. The list of extensions that are needed SHOULD appear in the /reason/ part of the Close frame.
Note that this status code is not used by the server, because it can fail the WebSocket handshake instead.

MESSAGE_TOO_BIG = 1009
indicates that an endpoint is terminating the connection because it has received a message that is too big
for it to process.

14 Chapter 4. wsproto API

wsproto Documentation

NORMAL_CLOSURE = 1000
indicates a normal closure, meaning that the purpose for which the connection was established has been
fulfilled.

NO_STATUS_RCVD = 1005
is a reserved value and MUST NOT be set as a status code in a Close control frame by an endpoint. It
is designated for use in applications expecting a status code to indicate that no status code was actually
present.

POLICY_VIOLATION = 1008
indicates that an endpoint is terminating the connection because it has received a message that violates its
policy. This is a generic status code that can be returned when there is no other more suitable status code
(e.g., 1003 or 1009) or if there is a need to hide specific details about the policy.

PROTOCOL_ERROR = 1002
indicates that an endpoint is terminating the connection due to a protocol error.

SERVICE_RESTART = 1012
Server/service is restarting (not part of RFC6455)

TLS_HANDSHAKE_FAILED = 1015
is a reserved value and MUST NOT be set as a status code in a Close control frame by an endpoint. It is
designated for use in applications expecting a status code to indicate that the connection was closed due to
a failure to perform a TLS handshake (e.g., the server certificate can’t be verified).

TRY_AGAIN_LATER = 1013
Temporary server condition forced blocking client’s request (not part of RFC6455)

UNSUPPORTED_DATA = 1003
indicates that an endpoint is terminating the connection because it has received a type of data it cannot
accept (e.g., an endpoint that understands only text data MAY send this if it receives a binary message).

4.6 Extensions

class wsproto.extensions.Extension

wsproto.extensions.SUPPORTED_EXTENSIONS = {'permessage-deflate': <class 'wsproto.extensions.PerMessageDeflate'>}
SUPPORTED_EXTENSIONS maps all supported extension names to their class. This can be used to iterate all
supported extensions of wsproto, instantiate new extensions based on their name, or check if a given extension
is supported or not.

4.7 Exceptions

class wsproto.utilities.LocalProtocolError
Indicates an error due to local/programming errors.

This is raised when the connection is asked to do something that is either incompatible with the state or the
websocket standard.

class wsproto.utilities.RemoteProtocolError(message, event_hint=None)
Indicates an error due to the remote’s actions.

This is raised when processing the bytes from the remote if the remote has sent data that is incompatible with
the websocket standard.

4.6. Extensions 15

wsproto Documentation

event_hint
This is a suggested wsproto Event to send to the client based on the error. It could be None if no hint is
available.

16 Chapter 4. wsproto API

Index

A
ABNORMAL_CLOSURE (wsproto.frame_protocol.CloseReason

attribute), 14
AcceptConnection (class in wsproto.events), 12

B
BINARY (wsproto.frame_protocol.Opcode attribute), 14
body_finished (wsproto.events.RejectData at-

tribute), 13
BytesMessage (class in wsproto.events), 13

C
client_extensions_handshake() (in module

wsproto.handshake), 12
CLOSE (wsproto.frame_protocol.Opcode attribute), 14
CloseConnection (class in wsproto.events), 13
CloseReason (class in wsproto.frame_protocol), 14
code (wsproto.events.CloseConnection attribute), 13
connection (wsproto.handshake.H11Handshake at-

tribute), 11
CONTINUATION (wsproto.frame_protocol.Opcode at-

tribute), 14

D
data (wsproto.events.Message attribute), 13
data (wsproto.events.RejectData attribute), 13

E
Event (class in wsproto.events), 12
event_hint (wsproto.utilities.RemoteProtocolError

attribute), 15
Extension (class in wsproto.extensions), 15
extensions (wsproto.events.Request attribute), 12
extra_headers (wsproto.events.Request attribute),

12

F
frame_finished (wsproto.events.Message attribute),

13

G
GOING_AWAY (wsproto.frame_protocol.CloseReason at-

tribute), 14

H
H11Handshake (class in wsproto.handshake), 11
has_body (wsproto.events.RejectConnection attribute),

12
headers (wsproto.events.RejectConnection attribute),

12
host (wsproto.events.Request attribute), 12

I
initiate_upgrade_connection()

(wsproto.handshake.H11Handshake method),
11

INTERNAL_ERROR (wsproto.frame_protocol.CloseReason
attribute), 14

INVALID_FRAME_PAYLOAD_DATA
(wsproto.frame_protocol.CloseReason at-
tribute), 14

L
LocalProtocolError (class in wsproto.utilities), 15

M
MANDATORY_EXT (wsproto.frame_protocol.CloseReason

attribute), 14
Message (class in wsproto.events), 13
message_finished (wsproto.events.Message at-

tribute), 13
MESSAGE_TOO_BIG (wsproto.frame_protocol.CloseReason

attribute), 14

N
NO_STATUS_RCVD (wsproto.frame_protocol.CloseReason

attribute), 15
NORMAL_CLOSURE (wsproto.frame_protocol.CloseReason

attribute), 14

17

wsproto Documentation

O
Opcode (class in wsproto.frame_protocol), 14

P
payload (wsproto.events.Ping attribute), 13
payload (wsproto.events.Pong attribute), 14
Ping (class in wsproto.events), 13
PING (wsproto.frame_protocol.Opcode attribute), 14
POLICY_VIOLATION (wsproto.frame_protocol.CloseReason

attribute), 15
Pong (class in wsproto.events), 13
PONG (wsproto.frame_protocol.Opcode attribute), 14
PROTOCOL_ERROR (wsproto.frame_protocol.CloseReason

attribute), 15

R
reason (wsproto.events.CloseConnection attribute), 13
receive_data() (wsproto.handshake.H11Handshake

method), 11
RejectConnection (class in wsproto.events), 12
RejectData (class in wsproto.events), 13
RemoteProtocolError (class in wsproto.utilities),

15
Request (class in wsproto.events), 12

S
send() (wsproto.handshake.H11Handshake method),

12
server_extensions_handshake() (in module

wsproto.handshake), 12
SERVICE_RESTART (wsproto.frame_protocol.CloseReason

attribute), 15
status_code (wsproto.events.RejectConnection at-

tribute), 13
SUPPORTED_EXTENSIONS (in module

wsproto.extensions), 15

T
target (wsproto.events.Request attribute), 12
TEXT (wsproto.frame_protocol.Opcode attribute), 14
TextMessage (class in wsproto.events), 13
TLS_HANDSHAKE_FAILED

(wsproto.frame_protocol.CloseReason at-
tribute), 15

TRY_AGAIN_LATER (wsproto.frame_protocol.CloseReason
attribute), 15

U
UNSUPPORTED_DATA (wsproto.frame_protocol.CloseReason

attribute), 15

W
WSConnection (class in wsproto), 11

18 Index

	Installation
	Getting Started
	Connections
	Connecting to a WebSocket server
	WebSocket Servers
	Protocol Errors
	Closing
	Ping Pong

	Advanced Usage
	Back-pressure
	Post handshake connection
	HTTP/2

	wsproto API
	Semantic Versioning
	Connection
	Handshake
	Events
	Frame Protocol
	Extensions
	Exceptions

